Spectral analysis of a thalamus-to-cortex

Seizure Pathway, David Lee Sherman, Yien Che Tsai, Lisa Ann Rossell, Marek A. Mirski, Nitish V. Thakor

Research output: Contribution to journalArticlepeer-review


Physiological evidence has shown that the anterior thalamus (AN) and its associated efferents/afferents constitute an important propagation pathway for one animal model of generalized tonic-clonic epileptic seizures. In this study we extend and confirm the support for AN's role by examining neuroelectric signal indicators during seizure episodes. We show that the electroencephalogram (EEG) recorded from AN is highly coherent with the EEG derived from the cortex (CTX). By removing the effects of another thalamic nucleus, posterior thalamus (PT)- unaffiliated with the tract linking AN to cortex-partial coherence analysis leaves the CTX/AN coherence undiminished. The most robust band of strong CTX-AN coherence is centered around the spike-wave pacing frequency of 1-3 Hz. Partialmulitple coherence analysis techniques are used to remove the possible signal contributions from hippocampus in addition to PT. The CTX-AN coherence still remains undiminished in the low-frequency bands. Conclusive evidence from coherence studies and other spectral measures reaffirm the special role of the AN in the propagation of seizure activity from subcortex to cortex.

Original languageEnglish (US)
Pages (from-to)657-664
Number of pages8
JournalIEEE Transactions on Biomedical Engineering
Issue number8
StatePublished - 1997


  • Coherence
  • EEG
  • Epilipsy
  • Siezure
  • Spectrum
  • Thalmus

ASJC Scopus subject areas

  • Biomedical Engineering


Dive into the research topics of 'Spectral analysis of a thalamus-to-cortex'. Together they form a unique fingerprint.

Cite this