Spatial Angular Compounding of Photoacoustic Images

Hyun Jae Kang, Muyinatu A.Lediju Bell, Xiaoyu Guo, Emad M. Boctor

Research output: Contribution to journalArticlepeer-review


Photoacoustic (PA) images utilize pulsed lasers and ultrasound transducers to visualize targets with higher optical absorption than the surrounding medium. However, they are susceptible to acoustic clutter and background noise artifacts that obfuscate biomedical structures of interest. We investigated three spatial-angular compounding methods to improve PA image quality for biomedical applications, implemented by combining multiple images acquired as an ultrasound probe was rotated about the elevational axis with the laser beam and target fixed. Compounding with conventional averaging was based on the pose information of each PA image, while compounding with weighted and selective averaging utilized both the pose and image content information. Weighted-average compounding enhanced PA images with the least distortion of signal size, particularly when there were large (i.e., 2.5 mm and 7°) perturbations from the initial probe position. Selective-average compounding offered the best improvement in image quality with up 181, 1665, and 1568 times higher contrast, CNR, and SNR, respectively, compared to the mean values of individual PA images. The three presented spatial compounding methods have promising potential to enhance image quality in multiple photoacoustic applications.

Original languageEnglish (US)
Article number7410055
Pages (from-to)1845-1855
Number of pages11
JournalIEEE transactions on medical imaging
Issue number8
StatePublished - Aug 2016


  • Biomedical imaging
  • Image enhancement
  • biomedical image processing
  • image reconstruction
  • ultrasonic imaging

ASJC Scopus subject areas

  • Software
  • Radiological and Ultrasound Technology
  • Computer Science Applications
  • Electrical and Electronic Engineering


Dive into the research topics of 'Spatial Angular Compounding of Photoacoustic Images'. Together they form a unique fingerprint.

Cite this