Social context affects testosterone-induced singing and the volume of song control nuclei in male canaries (Serinus canaria)

Géraldine Boseret, Claudio Carere, Gregory F. Ball, Jacques Balthazart

Research output: Contribution to journalArticle

Abstract

The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but pot in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.

Original languageEnglish (US)
Pages (from-to)1044-1060
Number of pages17
JournalJournal of Neurobiology
Volume66
Issue number10
DOIs
StatePublished - Sep 2006

Fingerprint

Canaries
Singing
Music
Testosterone
Dominance-Subordination
Birds
Capsules
Songbirds
Social Environment
Heterosexuality
Gonadal Steroid Hormones
Prosencephalon
Sexual Behavior
Estradiol

Keywords

  • HVC
  • Plasticity
  • Social control
  • Social dominance
  • Song system

ASJC Scopus subject areas

  • Neuroscience(all)

Cite this

Social context affects testosterone-induced singing and the volume of song control nuclei in male canaries (Serinus canaria). / Boseret, Géraldine; Carere, Claudio; Ball, Gregory F.; Balthazart, Jacques.

In: Journal of Neurobiology, Vol. 66, No. 10, 09.2006, p. 1044-1060.

Research output: Contribution to journalArticle

Boseret, Géraldine ; Carere, Claudio ; Ball, Gregory F. ; Balthazart, Jacques. / Social context affects testosterone-induced singing and the volume of song control nuclei in male canaries (Serinus canaria). In: Journal of Neurobiology. 2006 ; Vol. 66, No. 10. pp. 1044-1060.
@article{7e06062092614d4e877bb8ef3ec9b975,
title = "Social context affects testosterone-induced singing and the volume of song control nuclei in male canaries (Serinus canaria)",
abstract = "The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but pot in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.",
keywords = "HVC, Plasticity, Social control, Social dominance, Song system",
author = "G{\'e}raldine Boseret and Claudio Carere and Ball, {Gregory F.} and Jacques Balthazart",
year = "2006",
month = "9",
doi = "10.1002/neu.20268",
language = "English (US)",
volume = "66",
pages = "1044--1060",
journal = "Developmental Neurobiology",
issn = "1932-8451",
publisher = "John Wiley and Sons Inc.",
number = "10",

}

TY - JOUR

T1 - Social context affects testosterone-induced singing and the volume of song control nuclei in male canaries (Serinus canaria)

AU - Boseret, Géraldine

AU - Carere, Claudio

AU - Ball, Gregory F.

AU - Balthazart, Jacques

PY - 2006/9

Y1 - 2006/9

N2 - The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but pot in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.

AB - The contribution of social factors to seasonal plasticity in singing behavior and forebrain nuclei controlling song, and their interplay with gonadal steroid hormones are still poorly understood. In many songbird species, testosterone (T) enhances singing behavior but elevated plasma T concentrations are not absolutely required for singing to occur. Singing is generally produced either to defend a territory or to attract a mate and it is therefore not surprising that singing rate can be influenced by the sex and behavior of the social partner. We investigated, based on two independent experiments, the effect of the presence of a male or female partner on the rate of song produced by male canaries. In the first experiment, song rate was measured in dyads composed of one male and one female (M-F) or two males (M-M). Birds were implanted with T-filled Silastic capsules or with empty capsules as control. The number of complete song bouts produced by all males was recorded during 240 min on week 1, 2, 4, and 8 after implantation. On the day following each recording session, brains from approximately one-fourth of the birds were collected and the volumes of the song control nuclei HVC and RA were measured. T increased the singing rate and volume of HVC and RA but these effects were affected by the social context. Singing rates were higher in the M-M than in the M-F dyads. Also, in the M-M dyads a dominance-subordination relationship soon became established and dominant males sang at higher rates than subordinates in T-treated but pot in control pairs. The differences in song production were not reflected in the size of the song control nuclei: HVC was larger in M-F than in M-M males and within the M-M dyads, no difference in HVC or RA size could be detected between dominant and subordinate males. At the individual level, the song rate with was positively correlated with RA and to a lower degree HVC volume, but this relationship was observed only in M-M dyads, specifically in dominant males. A second experiment, carried out with castrated males that were all treated with T and exposed either to another T-treated castrate or to an estradiol-implanted female, confirmed that song rate was higher in the M-M than in the M-F condition and that HVC volume was larger in heterosexual than in same-sex dyads. The effects of T on singing rate and on the volume of the song control nuclei are thus modulated by the social environment, including the presence/absence of a potential mate and dominance status among males.

KW - HVC

KW - Plasticity

KW - Social control

KW - Social dominance

KW - Song system

UR - http://www.scopus.com/inward/record.url?scp=33747603259&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33747603259&partnerID=8YFLogxK

U2 - 10.1002/neu.20268

DO - 10.1002/neu.20268

M3 - Article

VL - 66

SP - 1044

EP - 1060

JO - Developmental Neurobiology

JF - Developmental Neurobiology

SN - 1932-8451

IS - 10

ER -