Skull registration for prone patient position using tracked ultrasound

Grace Underwood, Tamas Ungi, Zachary Baum, Andras Lasso, Gernot Kronreif, Gabor Fichtinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

PURPOSE: Tracked navigation has become prevalent in neurosurgery. Problems with registration of a patient and a preoperative image arise when the patient is in a prone position. Surfaces accessible to optical tracking on the back of the head are unreliable for registration. We investigated the accuracy of surface-based registration using points accessible through tracked ultrasound. Using ultrasound allows access to bone surfaces that are not available through optical tracking. Tracked ultrasound could eliminate the need to work (i) under the table for registration and (ii) adjust the tracker between surgery and registration. In addition, tracked ultrasound could provide a non-invasive method in comparison to an alternative method of registration involving screw implantation. METHODS: A phantom study was performed to test the feasibility of tracked ultrasound for registration. An initial registration was performed to partially align the pre-operative computer tomography data and skull phantom. The initial registration was performed by an anatomical landmark registration. Surface points accessible by tracked ultrasound were collected and used to perform an Iterative Closest Point Algorithm. RESULTS: When the surface registration was compared to a ground truth landmark registration, the average TRE was found to be 1.6±0.1mm and the average distance of points off the skull surface was 0.6±0.1mm. CONCLUSION: The use of tracked ultrasound is feasible for registration of patients in prone position and eliminates the need to perform registration under the table. The translational component of error found was minimal. Therefore, the amount of TRE in registration is due to a rotational component of error.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2017
Subtitle of host publicationImage-Guided Procedures, Robotic Interventions, and Modeling
PublisherSPIE
Volume10135
ISBN (Electronic)9781510607156
DOIs
StatePublished - 2017
Externally publishedYes
EventMedical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling - Orlando, United States
Duration: Feb 14 2017Feb 16 2017

Other

OtherMedical Imaging 2017: Image-Guided Procedures, Robotic Interventions, and Modeling
Country/TerritoryUnited States
CityOrlando
Period2/14/172/16/17

ASJC Scopus subject areas

  • Atomic and Molecular Physics, and Optics
  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Skull registration for prone patient position using tracked ultrasound'. Together they form a unique fingerprint.

Cite this