SkewIT: The Skew Index Test for large-scale GC Skew analysis of bacterial genomes

Jennifer Lu, Steven L. Salzberg

Research output: Contribution to journalArticlepeer-review

Abstract

GC skew is a phenomenon observed in many bacterial genomes, wherein the two replication strands of the same chromosome contain different proportions of guanine and cytosine nucleotides. Here we demonstrate that this phenomenon, which was first discovered in the mid-1990s, can be used today as an analysis tool for the 15,000+ complete bacterial genomes in NCBI's Refseq library. In order to analyze all 15,000+ genomes, we introduce a new method, SkewIT (Skew Index Test), that calculates a single metric representing the degree of GC skew for a genome. Using this metric, we demonstrate how GC skew patterns are conserved within certain bacterial phyla, e.g. Firmicutes, but show different patterns in other phylogenetic groups such as Actinobacteria. We also discovered that outlier values of SkewIT highlight potential bacterial mis-assemblies. Using our newly defined metric, we identify multiple mis-assembled chromosomal sequences in previously published complete bacterial genomes. We provide a SkewIT web app https://jenniferlu717.shinyapps.io/ SkewIT/ that calculates SkewI for any user-provided bacterial sequence. The web app also provides an interactive interface for the data generated in this paper, allowing users to further investigate the SkewI values and thresholds of the Refseq-97 complete bacterial genomes. Individual scripts for analysis of bacterial genomes are provided in the following repository: https://github.com/jenniferlu717/SkewIT.

Original languageEnglish (US)
Article numbere1008439
JournalPLoS computational biology
Volume16
Issue number12
DOIs
StatePublished - Dec 4 2020

ASJC Scopus subject areas

  • Ecology, Evolution, Behavior and Systematics
  • Modeling and Simulation
  • Ecology
  • Molecular Biology
  • Genetics
  • Cellular and Molecular Neuroscience
  • Computational Theory and Mathematics

Fingerprint Dive into the research topics of 'SkewIT: The Skew Index Test for large-scale GC Skew analysis of bacterial genomes'. Together they form a unique fingerprint.

Cite this