Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction—First Experience

Jan Fritz, Esther Raithel, Gaurav Thawait, Wesley Gilson, Derek Papp

Research output: Contribution to journalArticle

Abstract

PURPOSE: The aim of this study was to prospectively test the hypothesis that 6-fold acceleration of a 3-dimensional (3D) turbo spin echo (TSE) magnetic resonance imaging (MRI) pulse sequence with k-space undersampling and iterative reconstruction is feasible for fast high spatial resolution MRI of the knee, while yielding similar image quality and diagnostic performance when compared with a conventional 2-dimensional (2D) TSE MRI standard. MATERIALS AND METHODS: The study was approved by the institutional review board. A 10-minute isotropic 3D TSE knee protocol consisting of accelerated intermediate-weighted (repetition time, 900 milliseconds; echo time, 29 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 4:45 minutes) and fat-saturated T2-weighted (repetition time, 900 milliseconds; echo time, 92 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 5:10 minutes) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequence prototypes was compared against a 20-minute 2D TSE standard protocol. The accelerated SPACE sequences were equipped with an optional variable-density poisson-disc pattern as an undersampling mask. An undersampling factor of 0.17 was chosen (6-fold acceleration compared with an acquisition with full sampling). An iterative, sensitivity encoding-type reconstruction with L1 norm-based regularization term was used. The study was performed on a 3 T MRI system using a 15-channel transmit/receive knee coil. The study groups included 15 asymptomatic volunteers and 15 patient volunteers. Quantitative and qualitative assessments were performed by 2 observers. Outcome variables included signal and contrast-to-noise ratio, image quality, and diagnostic accuracy. Qualitative and quantitative measurements were statistically analyzed using nonparametric tests. P values of less than 0.01 were considered significant. RESULTS: The signal-to-noise ratios of 2D and 3D MRI were similar with the exception of fluid, which was brighter on 2D MRI. Relevant contrast-to-noise ratios of 2D MRI were higher than 3D MRI; however, observer ratings for satisfaction, image quality, and visibility of anatomic structures were similar for 2D and 3D MRI. There was moderate to excellent interobserver (κ = 0.54–1.00) and intermethod (κ = 0.54–1.00) agreement for assessing menisci, cartilage, ligaments, cartilage, and bone. Two-dimensional and 3D MRI had similar sensitivity (100%/100%, respectively) and specificity (87%/75%, respectively) for detecting 9 meniscal tears (P = 1.00). CONCLUSIONS: We demonstrate the successful clinical implementation of 3D TSE MRI with incoherent k-space undersampling and iterative reconstruction for 6-fold accelerated high spatial resolution isotropic 3D MRI data acquisition. Our preliminary assessments suggest similar image quality and diagnostic performance of a comprehensive 10-minute 3D TSE MRI prototype protocol and 20-minute TSE MRI standard protocol.

Original languageEnglish (US)
JournalInvestigative Radiology
DOIs
StateAccepted/In press - Dec 17 2015

Fingerprint

Knee
Magnetic Resonance Imaging
Signal-To-Noise Ratio
Cartilage
Volunteers
Research Ethics Committees
Masks
Tears
Ligaments
Noise
Fats
Bone and Bones

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

@article{60107ca035e74f71bef6410f10bee1b3,
title = "Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction—First Experience",
abstract = "PURPOSE: The aim of this study was to prospectively test the hypothesis that 6-fold acceleration of a 3-dimensional (3D) turbo spin echo (TSE) magnetic resonance imaging (MRI) pulse sequence with k-space undersampling and iterative reconstruction is feasible for fast high spatial resolution MRI of the knee, while yielding similar image quality and diagnostic performance when compared with a conventional 2-dimensional (2D) TSE MRI standard. MATERIALS AND METHODS: The study was approved by the institutional review board. A 10-minute isotropic 3D TSE knee protocol consisting of accelerated intermediate-weighted (repetition time, 900 milliseconds; echo time, 29 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 4:45 minutes) and fat-saturated T2-weighted (repetition time, 900 milliseconds; echo time, 92 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 5:10 minutes) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequence prototypes was compared against a 20-minute 2D TSE standard protocol. The accelerated SPACE sequences were equipped with an optional variable-density poisson-disc pattern as an undersampling mask. An undersampling factor of 0.17 was chosen (6-fold acceleration compared with an acquisition with full sampling). An iterative, sensitivity encoding-type reconstruction with L1 norm-based regularization term was used. The study was performed on a 3 T MRI system using a 15-channel transmit/receive knee coil. The study groups included 15 asymptomatic volunteers and 15 patient volunteers. Quantitative and qualitative assessments were performed by 2 observers. Outcome variables included signal and contrast-to-noise ratio, image quality, and diagnostic accuracy. Qualitative and quantitative measurements were statistically analyzed using nonparametric tests. P values of less than 0.01 were considered significant. RESULTS: The signal-to-noise ratios of 2D and 3D MRI were similar with the exception of fluid, which was brighter on 2D MRI. Relevant contrast-to-noise ratios of 2D MRI were higher than 3D MRI; however, observer ratings for satisfaction, image quality, and visibility of anatomic structures were similar for 2D and 3D MRI. There was moderate to excellent interobserver (κ = 0.54–1.00) and intermethod (κ = 0.54–1.00) agreement for assessing menisci, cartilage, ligaments, cartilage, and bone. Two-dimensional and 3D MRI had similar sensitivity (100{\%}/100{\%}, respectively) and specificity (87{\%}/75{\%}, respectively) for detecting 9 meniscal tears (P = 1.00). CONCLUSIONS: We demonstrate the successful clinical implementation of 3D TSE MRI with incoherent k-space undersampling and iterative reconstruction for 6-fold accelerated high spatial resolution isotropic 3D MRI data acquisition. Our preliminary assessments suggest similar image quality and diagnostic performance of a comprehensive 10-minute 3D TSE MRI prototype protocol and 20-minute TSE MRI standard protocol.",
author = "Jan Fritz and Esther Raithel and Gaurav Thawait and Wesley Gilson and Derek Papp",
year = "2015",
month = "12",
day = "17",
doi = "10.1097/RLI.0000000000000240",
language = "English (US)",
journal = "Investigative Radiology",
issn = "0020-9996",
publisher = "Lippincott Williams and Wilkins",

}

TY - JOUR

T1 - Six-Fold Acceleration of High-Spatial Resolution 3D SPACE MRI of the Knee Through Incoherent k-Space Undersampling and Iterative Reconstruction—First Experience

AU - Fritz, Jan

AU - Raithel, Esther

AU - Thawait, Gaurav

AU - Gilson, Wesley

AU - Papp, Derek

PY - 2015/12/17

Y1 - 2015/12/17

N2 - PURPOSE: The aim of this study was to prospectively test the hypothesis that 6-fold acceleration of a 3-dimensional (3D) turbo spin echo (TSE) magnetic resonance imaging (MRI) pulse sequence with k-space undersampling and iterative reconstruction is feasible for fast high spatial resolution MRI of the knee, while yielding similar image quality and diagnostic performance when compared with a conventional 2-dimensional (2D) TSE MRI standard. MATERIALS AND METHODS: The study was approved by the institutional review board. A 10-minute isotropic 3D TSE knee protocol consisting of accelerated intermediate-weighted (repetition time, 900 milliseconds; echo time, 29 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 4:45 minutes) and fat-saturated T2-weighted (repetition time, 900 milliseconds; echo time, 92 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 5:10 minutes) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequence prototypes was compared against a 20-minute 2D TSE standard protocol. The accelerated SPACE sequences were equipped with an optional variable-density poisson-disc pattern as an undersampling mask. An undersampling factor of 0.17 was chosen (6-fold acceleration compared with an acquisition with full sampling). An iterative, sensitivity encoding-type reconstruction with L1 norm-based regularization term was used. The study was performed on a 3 T MRI system using a 15-channel transmit/receive knee coil. The study groups included 15 asymptomatic volunteers and 15 patient volunteers. Quantitative and qualitative assessments were performed by 2 observers. Outcome variables included signal and contrast-to-noise ratio, image quality, and diagnostic accuracy. Qualitative and quantitative measurements were statistically analyzed using nonparametric tests. P values of less than 0.01 were considered significant. RESULTS: The signal-to-noise ratios of 2D and 3D MRI were similar with the exception of fluid, which was brighter on 2D MRI. Relevant contrast-to-noise ratios of 2D MRI were higher than 3D MRI; however, observer ratings for satisfaction, image quality, and visibility of anatomic structures were similar for 2D and 3D MRI. There was moderate to excellent interobserver (κ = 0.54–1.00) and intermethod (κ = 0.54–1.00) agreement for assessing menisci, cartilage, ligaments, cartilage, and bone. Two-dimensional and 3D MRI had similar sensitivity (100%/100%, respectively) and specificity (87%/75%, respectively) for detecting 9 meniscal tears (P = 1.00). CONCLUSIONS: We demonstrate the successful clinical implementation of 3D TSE MRI with incoherent k-space undersampling and iterative reconstruction for 6-fold accelerated high spatial resolution isotropic 3D MRI data acquisition. Our preliminary assessments suggest similar image quality and diagnostic performance of a comprehensive 10-minute 3D TSE MRI prototype protocol and 20-minute TSE MRI standard protocol.

AB - PURPOSE: The aim of this study was to prospectively test the hypothesis that 6-fold acceleration of a 3-dimensional (3D) turbo spin echo (TSE) magnetic resonance imaging (MRI) pulse sequence with k-space undersampling and iterative reconstruction is feasible for fast high spatial resolution MRI of the knee, while yielding similar image quality and diagnostic performance when compared with a conventional 2-dimensional (2D) TSE MRI standard. MATERIALS AND METHODS: The study was approved by the institutional review board. A 10-minute isotropic 3D TSE knee protocol consisting of accelerated intermediate-weighted (repetition time, 900 milliseconds; echo time, 29 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 4:45 minutes) and fat-saturated T2-weighted (repetition time, 900 milliseconds; echo time, 92 milliseconds; voxel size, 0.5 × 0.5 × 0.5 mm; acquisition time, 5:10 minutes) SPACE (sampling perfection with application optimized contrast using different flip angle evolutions) sequence prototypes was compared against a 20-minute 2D TSE standard protocol. The accelerated SPACE sequences were equipped with an optional variable-density poisson-disc pattern as an undersampling mask. An undersampling factor of 0.17 was chosen (6-fold acceleration compared with an acquisition with full sampling). An iterative, sensitivity encoding-type reconstruction with L1 norm-based regularization term was used. The study was performed on a 3 T MRI system using a 15-channel transmit/receive knee coil. The study groups included 15 asymptomatic volunteers and 15 patient volunteers. Quantitative and qualitative assessments were performed by 2 observers. Outcome variables included signal and contrast-to-noise ratio, image quality, and diagnostic accuracy. Qualitative and quantitative measurements were statistically analyzed using nonparametric tests. P values of less than 0.01 were considered significant. RESULTS: The signal-to-noise ratios of 2D and 3D MRI were similar with the exception of fluid, which was brighter on 2D MRI. Relevant contrast-to-noise ratios of 2D MRI were higher than 3D MRI; however, observer ratings for satisfaction, image quality, and visibility of anatomic structures were similar for 2D and 3D MRI. There was moderate to excellent interobserver (κ = 0.54–1.00) and intermethod (κ = 0.54–1.00) agreement for assessing menisci, cartilage, ligaments, cartilage, and bone. Two-dimensional and 3D MRI had similar sensitivity (100%/100%, respectively) and specificity (87%/75%, respectively) for detecting 9 meniscal tears (P = 1.00). CONCLUSIONS: We demonstrate the successful clinical implementation of 3D TSE MRI with incoherent k-space undersampling and iterative reconstruction for 6-fold accelerated high spatial resolution isotropic 3D MRI data acquisition. Our preliminary assessments suggest similar image quality and diagnostic performance of a comprehensive 10-minute 3D TSE MRI prototype protocol and 20-minute TSE MRI standard protocol.

UR - http://www.scopus.com/inward/record.url?scp=84950114001&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84950114001&partnerID=8YFLogxK

U2 - 10.1097/RLI.0000000000000240

DO - 10.1097/RLI.0000000000000240

M3 - Article

C2 - 26685106

AN - SCOPUS:84950114001

JO - Investigative Radiology

JF - Investigative Radiology

SN - 0020-9996

ER -