Single view geocentric pose in the wild

Gordon Christie, Kevin Foster, Shea Hagstrom, Gregory D. Hager, Myron Z. Brown

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Current methods for Earth observation tasks such as semantic mapping, map alignment, and change detection rely on near-nadir images; however, often the first available images in response to dynamic world events such as natural disasters are oblique. These tasks are much more difficult for oblique images due to observed object parallax. There has been recent success in learning to regress an object's geocentric pose, defined as height above ground and orientation with respect to gravity, by training with airborne lidar registered to satellite images. We present a model for this novel task that exploits affine invariance properties to outperform state of the art performance by a wide margin. We also address practical issues required to deploy this method in the wild for real-world applications. Our data and code are publicly available 1.

Original languageEnglish (US)
Title of host publicationProceedings - 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
PublisherIEEE Computer Society
Pages1162-1171
Number of pages10
ISBN (Electronic)9781665448994
DOIs
StatePublished - Jun 2021
Event2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021 - Virtual, Online, United States
Duration: Jun 19 2021Jun 25 2021

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2021
Country/TerritoryUnited States
CityVirtual, Online
Period6/19/216/25/21

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Single view geocentric pose in the wild'. Together they form a unique fingerprint.

Cite this