Silicon-Substrate Microelectrode Arrays for Parallel Recording of Neural Activity in Peripheral and Cranial Nerves

Gregory T.A. Kovacs, Christopher W. Storment, Meredith Halks-Miller, Carl R. Belczynski, Charles C.Delia Santina, Edwin R. Lewis, Nadim I. Maluf

Research output: Contribution to journalArticlepeer-review

127 Scopus citations


A new process for the fabrication of regeneration microelectrode arrays for peripheral and cranial nerve applications is presented. This type of array is implanted between the severed ends of nerves, the axons of which regenerate through via holes in the silicon and are thereafter held fixed with respect to the microelectrodes. The process described is designed for compatibility with industry-standard CMOS or BiCMOS processes (it does not involve high-temperature process steps nor heavily-doped etch-stop layers), and provides a thin membrane for the via holes, surrounded by a thick silicon supporting rim. Many basic questions remain regarding the optimum via hole and microelectrode geometries in terms of both biological and electrical performance of the implants, and therefore passive versions were fabricated as tools for addressing these issues in on-going work. Versions of the devices were implanted in the rat peroneal nerve and in the frog auditory nerve. In both cases, regeneration was verified histologically and it was observed that the regenerated nerves had reorganized into microfascicles containing both myelinated and unmyelinated axons and corresponding to the grid pattern of the via holes. These microelectrode arrays were shown to allow the recording of action potential signals in both the peripheral and cranial nerve settings, from several microelectrodes in parallel.

Original languageEnglish (US)
Pages (from-to)567-577
Number of pages11
JournalIEEE Transactions on Biomedical Engineering
Issue number6
StatePublished - Jun 1994
Externally publishedYes

ASJC Scopus subject areas

  • Biomedical Engineering


Dive into the research topics of 'Silicon-Substrate Microelectrode Arrays for Parallel Recording of Neural Activity in Peripheral and Cranial Nerves'. Together they form a unique fingerprint.

Cite this