Short-chain fatty acid delivery: assessing exogenous administration of the microbiome metabolite acetate in mice

Tyler B. Shubitowski, Brian G. Poll, Niranjana Natarajan, Jennifer L. Pluznick

Research output: Contribution to journalArticlepeer-review

Abstract

Short-chain fatty acids (SCFAs) are fermentation by-products of gut microbes which have been linked to positive effects on host physiology; the most abundant SCFA is acetate. Exogenous administration of acetate alters host metabolism, immune function, and blood pressure, making it a biologic of interest. The effects of acetate have been attributed to activation of G-protein–coupled receptors and other proteins (i.e., HDACs), often occurring at locations distant from the gut such as the pancreas or the kidney. However, due to technical difficulties and costs, studies have often delivered exogenous acetate without determining if systemic plasma acetate levels are altered. Thus, it is unclear to what extent each method of acetate delivery may alter systemic plasma acetate levels. In this study, we aimed to determine if acetate is elevated after exogenous administration by drinking water (DW), oral gavage (OG), or intraperitoneal (IP) injection, and if so, over what timecourse, to best inform future studies. Using a commercially available kit, we demonstrated that sodium acetate delivered over 21 days in DW does not elicit a measurable change in systemic acetate over baseline. However, when acetate is delivered by OG or IP injection, there are rapid, reproducible, and dose-dependent changes in plasma acetate. These studies report, for the first time, the timecourse of changes in plasma acetate following acetate administration by three common methods, and thus inform the best practices for exogenous acetate delivery.

Original languageEnglish (US)
Article numbere14005
JournalPhysiological Reports
Volume7
Issue number4
DOIs
StatePublished - Feb 1 2019

Keywords

  • Drinking water
  • i.p
  • injection
  • oral gavage
  • plasma acetate

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Fingerprint Dive into the research topics of 'Short-chain fatty acid delivery: assessing exogenous administration of the microbiome metabolite acetate in mice'. Together they form a unique fingerprint.

Cite this