Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming

Mengfei Chen, Jingjing Huang, Xuejiao Yang, Bingqian Liu, Weizhong Zhang, Li Huang, Fei Deng, Jian Ma, Yujing Bai, Rong Lu, Bing Huang, Qianying Gao, Yehong Zhuo, Jian Ge

Research output: Contribution to journalArticlepeer-review

Abstract

Human induced pluripotent stem cells (iPSCs) provide a valuable model for regenerative medicine and human disease research. To date, however, the reprogramming efficiency of human adult cells is still low. Recent studies have revealed that cell cycle is a key parameter driving epigenetic reprogramming to pluripotency. As is well known, retroviruses such as the Moloney murine leukemia virus (MoMLV) require cell division to integrate into the host genome and replicate, whereas the target primary cells for reprogramming are a mixture of several cell types with different cell cycle rhythms. Whether cell cycle synchronization has potential effect on retrovirus induced reprogramming has not been detailed. In this study, utilizing transient serum starvation induced synchronization, we demonstrated that starvation generated a reversible cell cycle arrest and synchronously progressed through G2/M phase after release, substantially improving retroviral infection efficiency. Interestingly, synchronized human dermal fibroblasts (HDF) and adipose stem cells (ASC) exhibited more homogenous epithelial morphology than normal FBS control after infection, and the expression of epithelial markers such as E-cadherin and Epcam were strongly activated. Futhermore, synchronization treatment ultimately improved Nanog positive clones, achieved a 15-20 fold increase. These results suggested that cell cycle synchronization promotes the mesenchymal to epithelial transition (MET) and facilitates retrovirus mediated reprogramming. Our study, utilization of serum starvation rather than additional chemicals, provide a new insight into cell cycle regulation and induced reprogramming of human cells.

Original languageEnglish (US)
Article numbere28203
JournalPloS one
Volume7
Issue number4
DOIs
StatePublished - Apr 18 2012
Externally publishedYes

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General

Fingerprint

Dive into the research topics of 'Serum starvation induced cell cycle synchronization facilitates human somatic cells reprogramming'. Together they form a unique fingerprint.

Cite this