Sensitivity and specificity of upper extremity movements decoded from electrocorticogram

An H. Do, Po T. Wang, Christine E. King, Andrew Schombs, Jack J. Lin, Mona Sazgar, Frank P K Hsu, Susan J. Shaw, David E. Millett, Charles Y. Liu, Agnieszka A. Szymanska, Luis A. Chui, Zoran Nenadic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Electrocorticogram (ECoG)-based brain computer interfaces (BCI) can potentially be used for control of arm prostheses. Restoring independent function to BCI users with such a system will likely require control of many degrees-of-freedom (DOF). However, our ability to decode many-DOF arm movements from ECoG signals has not been thoroughly tested. To this end, we conducted a comprehensive study of the ECoG signals underlying 6 elementary upper extremity movements. Two subjects undergoing ECoG electrode grid implantation for epilepsy surgery evaluation participated in the study. For each task, their data were analyzed to design a decoding model to classify ECoG as idling or movement. The decoding models were found to be highly sensitive in detecting movement, but not specific in distinguishing between different movement types. Since sensitivity and specificity must be traded-off, these results imply that conventional ECoG grids may not provide sufficient resolution for decoding many-DOF upper extremity movements.

Original languageEnglish (US)
Title of host publicationProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
Pages5618-5621
Number of pages4
DOIs
StatePublished - 2013
Externally publishedYes
Event2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013 - Osaka, Japan
Duration: Jul 3 2013Jul 7 2013

Other

Other2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2013
Country/TerritoryJapan
CityOsaka
Period7/3/137/7/13

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Signal Processing
  • Biomedical Engineering
  • Health Informatics

Fingerprint

Dive into the research topics of 'Sensitivity and specificity of upper extremity movements decoded from electrocorticogram'. Together they form a unique fingerprint.

Cite this