TY - JOUR
T1 - Selective Localization of a Novel Dendrimer Nanoparticle in Myocardial Ischemia-Reperfusion Injury
AU - Magruder, J. Trent
AU - Crawford, Todd C.
AU - Lin, Yi An
AU - Zhang, Fan
AU - Grimm, Joshua C.
AU - Kannan, Rangaramanujam M.
AU - Kannan, Sujatha
AU - Sciortino, Christopher M.
N1 - Publisher Copyright:
© 2017 The Society of Thoracic Surgeons
Copyright:
Copyright 2017 Elsevier B.V., All rights reserved.
PY - 2017/9
Y1 - 2017/9
N2 - Background Dendrimer nanoparticle therapies represent promising new approaches to drug delivery, particularly in diseases associated with inflammatory injury. However, their application has not been fully explored in models of acute myocardial ischemia (MI) and reperfusion injury. Methods White male New Zealand rabbits underwent left thoracotomy with 30-minute temporary left anterior descending artery occlusion and MI confirmed by electrocardiography and histology (MI rabbits, n = 9), or left thoracotomy and pericardial opening for 30 minutes but no left anterior descending artery occlusion (control [C] rabbits, n = 9) rabbits. Following the 30-minute period, a dendrimer (generation 6 dendrimer conjugated to cyanine-5 fluorescent dye [G6-Cy5], 6.7 nm diameter) was administered intravenously and the chest closed in layers. Animals were sacrificed at 3 hours (3 MI, 3 C), 24 hours (3 MI, 3 C), or 48 hours (3 MI, 3 C) postsurgery. Results As compared to controls, MI rabbits had twofold G6-Cy5 uptake in the myocardial anterior wall as compared to the same region in nonischemic control rabbits at 24 hours postsurgery (6.01 ± 0.57 μg/g versus 2.85 ± 0.85 μg/g; p = 0.04). This trend was also present at 48 hours (6.38 ± 1.53 μg/g versus 3.95 ± 0.60 μg/g, p = 0.21) and was qualitatively evident on confocal microscopy. G6-Cy5 half-life in serum was approximately 12 hours, with 22% of the injected G6-Cy5 dose remaining at 48 hours. Conclusions This study demonstrates for the first time that dendrimer nanodevices selectively localize in ischemic as compared to healthy myocardium. This indicates that dendrimer nanodevices are promising agents to deliver drugs specifically to the ischemic myocardium to attenuate the injury. Subsequent studies will assess the efficacy of a dendrimer-drug conjugate in ameliorating reperfusion injury following MI.
AB - Background Dendrimer nanoparticle therapies represent promising new approaches to drug delivery, particularly in diseases associated with inflammatory injury. However, their application has not been fully explored in models of acute myocardial ischemia (MI) and reperfusion injury. Methods White male New Zealand rabbits underwent left thoracotomy with 30-minute temporary left anterior descending artery occlusion and MI confirmed by electrocardiography and histology (MI rabbits, n = 9), or left thoracotomy and pericardial opening for 30 minutes but no left anterior descending artery occlusion (control [C] rabbits, n = 9) rabbits. Following the 30-minute period, a dendrimer (generation 6 dendrimer conjugated to cyanine-5 fluorescent dye [G6-Cy5], 6.7 nm diameter) was administered intravenously and the chest closed in layers. Animals were sacrificed at 3 hours (3 MI, 3 C), 24 hours (3 MI, 3 C), or 48 hours (3 MI, 3 C) postsurgery. Results As compared to controls, MI rabbits had twofold G6-Cy5 uptake in the myocardial anterior wall as compared to the same region in nonischemic control rabbits at 24 hours postsurgery (6.01 ± 0.57 μg/g versus 2.85 ± 0.85 μg/g; p = 0.04). This trend was also present at 48 hours (6.38 ± 1.53 μg/g versus 3.95 ± 0.60 μg/g, p = 0.21) and was qualitatively evident on confocal microscopy. G6-Cy5 half-life in serum was approximately 12 hours, with 22% of the injected G6-Cy5 dose remaining at 48 hours. Conclusions This study demonstrates for the first time that dendrimer nanodevices selectively localize in ischemic as compared to healthy myocardium. This indicates that dendrimer nanodevices are promising agents to deliver drugs specifically to the ischemic myocardium to attenuate the injury. Subsequent studies will assess the efficacy of a dendrimer-drug conjugate in ameliorating reperfusion injury following MI.
UR - http://www.scopus.com/inward/record.url?scp=85016509885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85016509885&partnerID=8YFLogxK
U2 - 10.1016/j.athoracsur.2016.12.051
DO - 10.1016/j.athoracsur.2016.12.051
M3 - Article
C2 - 28366468
AN - SCOPUS:85016509885
SN - 0003-4975
VL - 104
SP - 891
EP - 898
JO - Annals of Thoracic Surgery
JF - Annals of Thoracic Surgery
IS - 3
ER -