Segmentation of microcystic macular edema in Cirrus OCT scans with an exploratory longitudinal study

Emily K. Swingle, Andrew Lang, Aaron Carass, Omar Al-Louzi, Shiv Saidha, Jerry L. Prince, Peter A. Calabresi

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Microcystic macular edema (MME) is a term used to describe pseudocystic spaces in the inner nuclear layer (INL) of the human retina. It has been noted in multiple sclerosis (MS) as well as a variety of other diseases. The processes that lead to MME formation and their change over time have yet to be explained sufficiently. The low rate at which MME occurs within such diverse patient groups makes the identification and consistent quantification of this pathology important for developing patient-specific prognoses. MME is observed in optical coherence tomography (OCT) scans of the retina as changes in light reflectivity in a pattern suggestive of fluid accumulations called pseudocysts. Pseudocysts can be readily identified in higher signal-to-noise ratio (SNR) images, however pseudocysts can be indistinguishable from noise in lower SNR scans. In this work, we expand upon our earlier MME identification methods on Spectralis OCT scans to handle lower quality Cirrus OCT scans. Our approach uses a random forest classifier, trained on manual segmentation of ten subjects, to automatically detect MME. The algorithm has a true positive rate for MME identification of 0.95 and a Dice score of 0.79. We include a preliminary longitudinal study of three patients over four to five years to explore the longitudinal changes of MME. The patients with relapsing-remitting MS and neuromyelitis optica appear to have dynamic pseudocyst volumes, while the MME volume appears stable in the one patient with primary progressive MS.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2015
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor Gimi, Robert C. Molthen
PublisherSPIE
ISBN (Electronic)9781628415070
DOIs
StatePublished - Jan 1 2015
EventMedical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging - Orlando, United States
Duration: Feb 24 2015Feb 26 2015

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume9417
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging
CountryUnited States
CityOrlando
Period2/24/152/26/15

Keywords

  • Microcystic macular edema
  • OCT
  • Retina
  • Segmentation

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint Dive into the research topics of 'Segmentation of microcystic macular edema in Cirrus OCT scans with an exploratory longitudinal study'. Together they form a unique fingerprint.

Cite this