Secondary structures comparison of aquaporin-1 and bacteriorhodopsin: A Fourier transform infrared spectroscopy study of two-dimensional membrane crystals

Véronique Cabiaux, Keith A. Oberg, Petr Pancoska, Thomas Walz, Peter Agre, Andreas Engel

Research output: Contribution to journalArticlepeer-review

Abstract

Aquaporins are integral membrane proteins found in diverse animal and plant tissues that mediate the permeability of plasma membranes to water molecules. Projection maps of two-dimensional crystals of aquaporin-1 (AQP1) reconstituted in lipid membranes suggested the presence of six to eight transmembrane helices in the protein. However, data from other sequence and spectroscopic analyses indicate that this protein may adopt a porin-like β- barrel fold. In this paper, we use Fourier transform infrared spectroscopy to characterize the secondary structure of highly purified native and proteolyzed AQP1 reconstituted in membrane crystalline arrays and compare it to bacteriorhodopsin. For this analysis the fractional secondary structure contents have been determined by using several different algorithms. In addition, a neural network-based evaluation of the Fourier transform infrared spectra in terms of numbers of secondary structure segments and their interconnections [s(ij)] has been performed. The following conclusions were reached: 1) AQP1 is a highly helical protein (42-48% α-helix) with little or no β-sheet content. 2) The α-helices have a transmembrane orientation, but are more tilted (21°or 27°, depending on the considered refractive index) than the bacteriorhodopsin helices. 3) The helices in AQP1 undergo limited hydrogen/deuterium exchange and thus are not readily accessible to solvent. Our data support the AQP1 structural model derived from sequence prediction and epitope insertion experiments: AQP1 is a protein with at least six closely associated α-helices that span the lipid membrane.

Original languageEnglish (US)
Pages (from-to)406-417
Number of pages12
JournalBiophysical journal
Volume73
Issue number1
DOIs
StatePublished - Jul 1997

ASJC Scopus subject areas

  • Biophysics

Fingerprint Dive into the research topics of 'Secondary structures comparison of aquaporin-1 and bacteriorhodopsin: A Fourier transform infrared spectroscopy study of two-dimensional membrane crystals'. Together they form a unique fingerprint.

Cite this