SDF1α/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons

Yongquan Luo, Justin Lathia, Mohammed Mughal, Mark P. Mattson

Research output: Contribution to journalArticle

Abstract

Stromal cell-derived factor α (SDF1α) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1α/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1α resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1α rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1α enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1α stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1α stimulation increases the expression of GAD67 at both themRNAand protein levels, and increases the amount and neurite localization of γ-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1α-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1α-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1α/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.

Original languageEnglish (US)
Pages (from-to)24789-24800
Number of pages12
JournalJournal of Biological Chemistry
Volume283
Issue number36
DOIs
StatePublished - Sep 5 2008
Externally publishedYes

Fingerprint

CXCR4 Receptors
GABAergic Neurons
Glutamate Decarboxylase
Neurons
Transcription Factors
Chemical activation
Extracellular Signal-Regulated MAP Kinases
gamma-Aminobutyric Acid
Genes
GTP-Binding Proteins
Aminobutyrates
Cyclic AMP Response Element-Binding Protein
Proteins
Mitogen-Activated Protein Kinase 3
Chromatin Immunoprecipitation
Mitogen-Activated Protein Kinase 1
Electrophoretic Mobility Shift Assay
Neurites
Stromal Cells
G-Protein-Coupled Receptors

ASJC Scopus subject areas

  • Biochemistry
  • Cell Biology
  • Molecular Biology

Cite this

SDF1α/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons. / Luo, Yongquan; Lathia, Justin; Mughal, Mohammed; Mattson, Mark P.

In: Journal of Biological Chemistry, Vol. 283, No. 36, 05.09.2008, p. 24789-24800.

Research output: Contribution to journalArticle

@article{d71a00c14c1d42d99b66a652f498624a,
title = "SDF1α/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons",
abstract = "Stromal cell-derived factor α (SDF1α) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1α/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1α resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1α rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1α enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1α stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1α stimulation increases the expression of GAD67 at both themRNAand protein levels, and increases the amount and neurite localization of γ-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1α-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1α-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1α/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.",
author = "Yongquan Luo and Justin Lathia and Mohammed Mughal and Mattson, {Mark P.}",
year = "2008",
month = "9",
day = "5",
doi = "10.1074/jbc.M800649200",
language = "English (US)",
volume = "283",
pages = "24789--24800",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "36",

}

TY - JOUR

T1 - SDF1α/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons

AU - Luo, Yongquan

AU - Lathia, Justin

AU - Mughal, Mohammed

AU - Mattson, Mark P.

PY - 2008/9/5

Y1 - 2008/9/5

N2 - Stromal cell-derived factor α (SDF1α) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1α/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1α resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1α rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1α enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1α stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1α stimulation increases the expression of GAD67 at both themRNAand protein levels, and increases the amount and neurite localization of γ-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1α-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1α-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1α/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.

AB - Stromal cell-derived factor α (SDF1α) and its cognate receptor CXCR4 play an important role in neuronal development in the hippocampus, but the genes directly regulated by SDF1α/CXCR4 signaling are unknown. To study the role of CXCR4 targeted genes in neuronal development, we used neuronal cultures established from embryonic day 18 rats. Hippocampal neurons express CXCR4 receptor proteins and are stimulated by SDF1α resulting in activation of extracellular signal-regulated kinase (ERK)1/2 and the transcription factor cAMP-response element-binding protein. SDF1α rapidly induces the expression of the early growth response gene Egr1, a transcription factor involved in activity-dependent neuronal responses, in a concentration-dependent manner. Gel-shift analysis showed that SDF1α enhances DNA binding activity to the Egr1-containing promoter for GAD67. Chromatin immunoprecipitation analysis using an Egr1 antibody indicated that SDF1α stimulation increases binding of Egr1 to a GAD67 promoter DNA sequence. SDF1α stimulation increases the expression of GAD67 at both themRNAand protein levels, and increases the amount and neurite localization of γ-aminobutyric acid (GABA) in neurons already expressing GABA. SDF1α-induced Egr1/GAD67 expression is mediated by the G protein-coupled CXCR4 receptor and activation of the ERK pathway. Reduction of Egr1 gene expression using small interfering RNA technology lowers the level of GAD67 transcripts and inhibits SDF1α-induced GABA production. Inhibition of CXCR4 activation in the developing mouse brain in utero greatly reduced Egr1 and GAD67 mRNA levels and GAD67 protein levels, suggesting a pivotal role for CXCR4 signaling in the development of GABAergic neurons in vivo. Our data suggest that SDF1α/CXCR4/G protein/ERK signaling induces the expression of the GAD67 system via Egr1 activation, a mechanism that may promote the maturation of GABAergic neurons during development.

UR - http://www.scopus.com/inward/record.url?scp=54049138890&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=54049138890&partnerID=8YFLogxK

U2 - 10.1074/jbc.M800649200

DO - 10.1074/jbc.M800649200

M3 - Article

C2 - 18606818

AN - SCOPUS:54049138890

VL - 283

SP - 24789

EP - 24800

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 36

ER -