TY - GEN
T1 - Sclera Force Evaluation during Vitreoretinal Surgeries in Ex Vivo Porcine Eye Model
AU - Patel, Niravkumar
AU - Urias, Muller
AU - Ebrahimi, Ali
AU - He, Changyan
AU - Gehlbach, Peter
AU - Iordachita, Iulian
N1 - Funding Information:
This work was supported by U.S. National Institutes of Health under grant number 1R01EB023943-01. The work of M. Urias was also supported by Instituto da Visão (IPEPO) and Lemann Foundation. The work of PLG was supported in part by Research to Prevent Blindness, New York, USA, and gifts by the J. Willard and Alice S. Marriott Foundation, the Gale Trust, Mr. Herb Ehlers, Mr. Bill Wilbur, Mr. and Mrs. Rajandre Shaw, Ms. Helen Nassif, Ms Mary Ellen Keck, and Mr. Ronald Stiff.
PY - 2019/10
Y1 - 2019/10
N2 - Vitreoretinal surgery is among the most challenging microsurgical procedures as it requires precise tool manipulation in a constrained environment, while the tool-tissue interaction forces are at the human perception limits. While tool tip forces are certainly important, the scleral forces at the tool insertion ports are also important. Clinicians often rely on these forces to manipulate the eyeball position during surgery. Measuring sclera forces could enable valuable sensory input to avoid tissue damage, especially for a cooperatively controlled robotic assistant that otherwise removes the sensation of these familiar intraoperative forces. Previously, our group has measured sclera forces in phantom experiments. However, to the best of our knowledge, there are no published data measuring scleral forces in biological (ex-vivo/in-vivo) eye models. In this paper, we measured sclera forces in ex-vivo porcine eye model. A Fiber Bragg Grating (FBG) based force sensing instrument with a diameter of ~900 μm and a resolution of ~1 mN was used to measure the forces while the clinician-subject followed retinal vessels in manual and robot-assisted modes. Analysis of measured forces show that the average sclera force in manual mode was 133.74 mN while in robot-assisted mode was 146.03 mN.
AB - Vitreoretinal surgery is among the most challenging microsurgical procedures as it requires precise tool manipulation in a constrained environment, while the tool-tissue interaction forces are at the human perception limits. While tool tip forces are certainly important, the scleral forces at the tool insertion ports are also important. Clinicians often rely on these forces to manipulate the eyeball position during surgery. Measuring sclera forces could enable valuable sensory input to avoid tissue damage, especially for a cooperatively controlled robotic assistant that otherwise removes the sensation of these familiar intraoperative forces. Previously, our group has measured sclera forces in phantom experiments. However, to the best of our knowledge, there are no published data measuring scleral forces in biological (ex-vivo/in-vivo) eye models. In this paper, we measured sclera forces in ex-vivo porcine eye model. A Fiber Bragg Grating (FBG) based force sensing instrument with a diameter of ~900 μm and a resolution of ~1 mN was used to measure the forces while the clinician-subject followed retinal vessels in manual and robot-assisted modes. Analysis of measured forces show that the average sclera force in manual mode was 133.74 mN while in robot-assisted mode was 146.03 mN.
UR - http://www.scopus.com/inward/record.url?scp=85078701225&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85078701225&partnerID=8YFLogxK
U2 - 10.1109/SENSORS43011.2019.8956820
DO - 10.1109/SENSORS43011.2019.8956820
M3 - Conference contribution
C2 - 32477439
AN - SCOPUS:85078701225
T3 - Proceedings of IEEE Sensors
BT - 2019 IEEE Sensors, SENSORS 2019 - Conference Proceedings
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE Sensors, SENSORS 2019
Y2 - 27 October 2019 through 30 October 2019
ER -