Sclera Force Control in Robot-assisted Eye Surgery: Adaptive Force Control vs. Auditory Feedback

Ali Ebrahimi, Changyan He, Niravkumar Patel, Marin Kobilarov, Peter Gehlbach, Iulian Iordachita

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Surgeon hand tremor limits human capability during microsurgical procedures such as those that treat the eye. In contrast, elimination of hand tremor through the introduction of microsurgical robots diminishes the surgeons tactile perception of useful and familiar tool-to-sclera forces. While the large mass and inertia of eye surgical robot prevents surgeon microtremor, loss of perception of small scleral forces may put the sclera at risk of injury. In this paper, we have applied and compared two different methods to assure the safety of sclera tissue during robot-assisted eye surgery. In the active control method, an adaptive force control strategy is implemented on the Steady-Hand Eye Robot in order to control the magnitude of scleral forces when they exceed safe boundaries. This autonomous force compensation is then compared to a passive force control method in which the surgeon performs manual adjustments in response to the provided audio feedback proportional to the magnitude of sclera force. A pilot study with three users indicate that the active control method is potentially more efficient.

Original languageEnglish (US)
Title of host publication2019 International Symposium on Medical Robotics, ISMR 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538678251
DOIs
StatePublished - May 8 2019
Event2019 International Symposium on Medical Robotics, ISMR 2019 - Atlanta, United States
Duration: Apr 3 2019Apr 5 2019

Publication series

Name2019 International Symposium on Medical Robotics, ISMR 2019

Conference

Conference2019 International Symposium on Medical Robotics, ISMR 2019
Country/TerritoryUnited States
CityAtlanta
Period4/3/194/5/19

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Biomedical Engineering

Fingerprint

Dive into the research topics of 'Sclera Force Control in Robot-assisted Eye Surgery: Adaptive Force Control vs. Auditory Feedback'. Together they form a unique fingerprint.

Cite this