Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines

Ana I. Robles, Mollie H. Wright, Bheru Gandhi, Steven S. Feis, Christin L. Hanigan, Adrian Wiestner, Lyuba Varticovski

Research output: Contribution to journalArticle

Abstract

Purpose: Loss of p53 function impairs apoptosis induced by DNA-damaging agents used for cancer therapy. Here, we examined the effect of the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin (DMAG) on doxorubicin-induced apoptosis in lymphoma. We aimed to establish the optimal schedule for administration of both drugs in combination and the molecular basis for their interaction. Experimental Design: Isogenic lymphoblastoid and nonisogenic lymphoma cell lines differing in p53 status were exposed to each drug or combination. Drug effects were examined using Annexin V, active caspase-3, cell cycle, and cytotoxicity assays. Synergy was evaluated by median effect/combination index. Protein expression and kinase inhibition provided insight into the molecular mechanisms of drug interaction. Results: Presence of mutant p53 conferred increased survival to single agents. Nevertheless, DMAG showed synergistic toxicity with doxorubicin independently of p53 status. Synergy required exposure to doxorubicin before DMAG. DMAG-mediated down-regulation of CHK1, a known HSP90 client, forced doxorubicin-treated cells into premature mitosis followed by apoptosis. A CHK1 inhibitor, SB-218078, reproduced the effect of DMAG. Administration of DMAG before doxorubicin resulted in G1-S arrest and protection from apoptosis, leading to additive or antagonistic interactions that were exacerbated by p53 mutation. Conclusions: Administration of DMAG to doxorubicin-primed cells induced premature mitosis and had a synergistic effect on apoptosis regardless of p53 status. These observations provide a rationale for prospective clinical trials and stress the need to consider schedule of exposure as a critical determinant of the overall response when DMAG is combined with chemotherapeutic agents for the treatment of patients with relapsed/refractory disease.

Original languageEnglish (US)
Pages (from-to)6547-6556
Number of pages10
JournalClinical Cancer Research
Volume12
Issue number21
DOIs
StatePublished - Nov 1 2006
Externally publishedYes

Fingerprint

17-(dimethylaminoethylamino)-17-demethoxygeldanamycin
HSP90 Heat-Shock Proteins
Doxorubicin
Lymphoma
Appointments and Schedules
Apoptosis
Cell Line
Drug Combinations
Mitosis
Annexin A5
Proxy
Drug Interactions
Caspase 3
Protein Kinases
Cell Cycle
Research Design
Down-Regulation
Clinical Trials

ASJC Scopus subject areas

  • Cancer Research
  • Oncology

Cite this

Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. / Robles, Ana I.; Wright, Mollie H.; Gandhi, Bheru; Feis, Steven S.; Hanigan, Christin L.; Wiestner, Adrian; Varticovski, Lyuba.

In: Clinical Cancer Research, Vol. 12, No. 21, 01.11.2006, p. 6547-6556.

Research output: Contribution to journalArticle

Robles, Ana I. ; Wright, Mollie H. ; Gandhi, Bheru ; Feis, Steven S. ; Hanigan, Christin L. ; Wiestner, Adrian ; Varticovski, Lyuba. / Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. In: Clinical Cancer Research. 2006 ; Vol. 12, No. 21. pp. 6547-6556.
@article{26f095d20d734379a9cd8fa2bc62f9a2,
title = "Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines",
abstract = "Purpose: Loss of p53 function impairs apoptosis induced by DNA-damaging agents used for cancer therapy. Here, we examined the effect of the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin (DMAG) on doxorubicin-induced apoptosis in lymphoma. We aimed to establish the optimal schedule for administration of both drugs in combination and the molecular basis for their interaction. Experimental Design: Isogenic lymphoblastoid and nonisogenic lymphoma cell lines differing in p53 status were exposed to each drug or combination. Drug effects were examined using Annexin V, active caspase-3, cell cycle, and cytotoxicity assays. Synergy was evaluated by median effect/combination index. Protein expression and kinase inhibition provided insight into the molecular mechanisms of drug interaction. Results: Presence of mutant p53 conferred increased survival to single agents. Nevertheless, DMAG showed synergistic toxicity with doxorubicin independently of p53 status. Synergy required exposure to doxorubicin before DMAG. DMAG-mediated down-regulation of CHK1, a known HSP90 client, forced doxorubicin-treated cells into premature mitosis followed by apoptosis. A CHK1 inhibitor, SB-218078, reproduced the effect of DMAG. Administration of DMAG before doxorubicin resulted in G1-S arrest and protection from apoptosis, leading to additive or antagonistic interactions that were exacerbated by p53 mutation. Conclusions: Administration of DMAG to doxorubicin-primed cells induced premature mitosis and had a synergistic effect on apoptosis regardless of p53 status. These observations provide a rationale for prospective clinical trials and stress the need to consider schedule of exposure as a critical determinant of the overall response when DMAG is combined with chemotherapeutic agents for the treatment of patients with relapsed/refractory disease.",
author = "Robles, {Ana I.} and Wright, {Mollie H.} and Bheru Gandhi and Feis, {Steven S.} and Hanigan, {Christin L.} and Adrian Wiestner and Lyuba Varticovski",
year = "2006",
month = "11",
day = "1",
doi = "10.1158/1078-0432.CCR-06-1178",
language = "English (US)",
volume = "12",
pages = "6547--6556",
journal = "Clinical Cancer Research",
issn = "1078-0432",
publisher = "American Association for Cancer Research Inc.",
number = "21",

}

TY - JOUR

T1 - Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines

AU - Robles, Ana I.

AU - Wright, Mollie H.

AU - Gandhi, Bheru

AU - Feis, Steven S.

AU - Hanigan, Christin L.

AU - Wiestner, Adrian

AU - Varticovski, Lyuba

PY - 2006/11/1

Y1 - 2006/11/1

N2 - Purpose: Loss of p53 function impairs apoptosis induced by DNA-damaging agents used for cancer therapy. Here, we examined the effect of the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin (DMAG) on doxorubicin-induced apoptosis in lymphoma. We aimed to establish the optimal schedule for administration of both drugs in combination and the molecular basis for their interaction. Experimental Design: Isogenic lymphoblastoid and nonisogenic lymphoma cell lines differing in p53 status were exposed to each drug or combination. Drug effects were examined using Annexin V, active caspase-3, cell cycle, and cytotoxicity assays. Synergy was evaluated by median effect/combination index. Protein expression and kinase inhibition provided insight into the molecular mechanisms of drug interaction. Results: Presence of mutant p53 conferred increased survival to single agents. Nevertheless, DMAG showed synergistic toxicity with doxorubicin independently of p53 status. Synergy required exposure to doxorubicin before DMAG. DMAG-mediated down-regulation of CHK1, a known HSP90 client, forced doxorubicin-treated cells into premature mitosis followed by apoptosis. A CHK1 inhibitor, SB-218078, reproduced the effect of DMAG. Administration of DMAG before doxorubicin resulted in G1-S arrest and protection from apoptosis, leading to additive or antagonistic interactions that were exacerbated by p53 mutation. Conclusions: Administration of DMAG to doxorubicin-primed cells induced premature mitosis and had a synergistic effect on apoptosis regardless of p53 status. These observations provide a rationale for prospective clinical trials and stress the need to consider schedule of exposure as a critical determinant of the overall response when DMAG is combined with chemotherapeutic agents for the treatment of patients with relapsed/refractory disease.

AB - Purpose: Loss of p53 function impairs apoptosis induced by DNA-damaging agents used for cancer therapy. Here, we examined the effect of the heat shock protein 90 (HSP90) inhibitor 17-(dimethylaminoethylamino)-17- demethoxygeldanamycin (DMAG) on doxorubicin-induced apoptosis in lymphoma. We aimed to establish the optimal schedule for administration of both drugs in combination and the molecular basis for their interaction. Experimental Design: Isogenic lymphoblastoid and nonisogenic lymphoma cell lines differing in p53 status were exposed to each drug or combination. Drug effects were examined using Annexin V, active caspase-3, cell cycle, and cytotoxicity assays. Synergy was evaluated by median effect/combination index. Protein expression and kinase inhibition provided insight into the molecular mechanisms of drug interaction. Results: Presence of mutant p53 conferred increased survival to single agents. Nevertheless, DMAG showed synergistic toxicity with doxorubicin independently of p53 status. Synergy required exposure to doxorubicin before DMAG. DMAG-mediated down-regulation of CHK1, a known HSP90 client, forced doxorubicin-treated cells into premature mitosis followed by apoptosis. A CHK1 inhibitor, SB-218078, reproduced the effect of DMAG. Administration of DMAG before doxorubicin resulted in G1-S arrest and protection from apoptosis, leading to additive or antagonistic interactions that were exacerbated by p53 mutation. Conclusions: Administration of DMAG to doxorubicin-primed cells induced premature mitosis and had a synergistic effect on apoptosis regardless of p53 status. These observations provide a rationale for prospective clinical trials and stress the need to consider schedule of exposure as a critical determinant of the overall response when DMAG is combined with chemotherapeutic agents for the treatment of patients with relapsed/refractory disease.

UR - http://www.scopus.com/inward/record.url?scp=33751258936&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=33751258936&partnerID=8YFLogxK

U2 - 10.1158/1078-0432.CCR-06-1178

DO - 10.1158/1078-0432.CCR-06-1178

M3 - Article

VL - 12

SP - 6547

EP - 6556

JO - Clinical Cancer Research

JF - Clinical Cancer Research

SN - 1078-0432

IS - 21

ER -