Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas

Katrin Lamszus, John J Laterra, Manfred Westphal, Eliot M. Rosen

Research output: Contribution to journalArticle

Abstract

Scatter factor/hepatocyte growth factor (SF/HGF) is a pleiotrophic cytokine that stimulates motility and invasion of several cancer cell types and induces angiogenesis. Its receptor MET is a transmembrane tyrosine kinase encoded by the C-MET proto-oncogene. To assess the potential relevance of SF/HGF in gliomas we performed functional studies in vivo and in vitro, expression analyses and correlative studies. We showed that both SF/HGF and MET are expressed in gliomas in vivo and are upregulated during transition from low grade to malignant glioma. When SF/HGF cDNA was transfected into glioma cells that expressed the MET receptor the cells formed considerably larger and more vascularized intracranial tumors in vivo than SF/HGF negative control clones. In other glioma cells, which constitutively expressed both SF/HGF and MET, we abolished SF/HGF expression by antisense ribozyme-targeting, which led to a significant decrease in tumorigenicity and tumor growth. In vitro SF/HGF strongly stimulated glioma cell motility and to a lesser degree proliferation. SF/HGF also strongly increased endothelial cell motility in vitro and extracts of tumors derived from SF/HGF-transfected glioma cells were more mitogenic for endothelial cells and more angiogenic in the rat cornea angiogenesis assay than extracts from control tumors. In a three-dimensional in vitro angiogenesis assay basic fibroblast growth factor (bFGF) was found to synergize with either SF/HGF or vascular endothelial growth factor (VEGF) in inducing endothelial capillary-like tubes, whereas neither SF/HGF nor VEGF alone or in combination were effective. Interestingly, while both VEGF and SF/HGF levels appeared to be increased in malignant gliomas compared with low grade ones, this was not the case for bFGF of which biologically relevant levels were already present in low grade gliomas. It thus seems that bFGF alone is insufficient to induce angiogenesis in gliomas but may act synergistically with either VEGF and/or SF/HGF when these become upregulated during malignant progression. In conclusion, we showed that SF/HGF may contribute to glioma progression by stimulating tumor invasiveness, proliferation and neovascularization. Copyright (C) 1999 ISDN.

Original languageEnglish (US)
Pages (from-to)517-530
Number of pages14
JournalInternational Journal of Developmental Neuroscience
Volume17
Issue number5-6
DOIs
StatePublished - Aug 1999

Fingerprint

Hepatocyte Growth Factor
Glioma
Vascular Endothelial Growth Factor A
Fibroblast Growth Factor 2
Neoplasms
Cell Movement

ASJC Scopus subject areas

  • Developmental Biology
  • Developmental Neuroscience

Cite this

Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas. / Lamszus, Katrin; Laterra, John J; Westphal, Manfred; Rosen, Eliot M.

In: International Journal of Developmental Neuroscience, Vol. 17, No. 5-6, 08.1999, p. 517-530.

Research output: Contribution to journalArticle

@article{07850ba6a32d4758b16a6625958bf953,
title = "Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas",
abstract = "Scatter factor/hepatocyte growth factor (SF/HGF) is a pleiotrophic cytokine that stimulates motility and invasion of several cancer cell types and induces angiogenesis. Its receptor MET is a transmembrane tyrosine kinase encoded by the C-MET proto-oncogene. To assess the potential relevance of SF/HGF in gliomas we performed functional studies in vivo and in vitro, expression analyses and correlative studies. We showed that both SF/HGF and MET are expressed in gliomas in vivo and are upregulated during transition from low grade to malignant glioma. When SF/HGF cDNA was transfected into glioma cells that expressed the MET receptor the cells formed considerably larger and more vascularized intracranial tumors in vivo than SF/HGF negative control clones. In other glioma cells, which constitutively expressed both SF/HGF and MET, we abolished SF/HGF expression by antisense ribozyme-targeting, which led to a significant decrease in tumorigenicity and tumor growth. In vitro SF/HGF strongly stimulated glioma cell motility and to a lesser degree proliferation. SF/HGF also strongly increased endothelial cell motility in vitro and extracts of tumors derived from SF/HGF-transfected glioma cells were more mitogenic for endothelial cells and more angiogenic in the rat cornea angiogenesis assay than extracts from control tumors. In a three-dimensional in vitro angiogenesis assay basic fibroblast growth factor (bFGF) was found to synergize with either SF/HGF or vascular endothelial growth factor (VEGF) in inducing endothelial capillary-like tubes, whereas neither SF/HGF nor VEGF alone or in combination were effective. Interestingly, while both VEGF and SF/HGF levels appeared to be increased in malignant gliomas compared with low grade ones, this was not the case for bFGF of which biologically relevant levels were already present in low grade gliomas. It thus seems that bFGF alone is insufficient to induce angiogenesis in gliomas but may act synergistically with either VEGF and/or SF/HGF when these become upregulated during malignant progression. In conclusion, we showed that SF/HGF may contribute to glioma progression by stimulating tumor invasiveness, proliferation and neovascularization. Copyright (C) 1999 ISDN.",
author = "Katrin Lamszus and Laterra, {John J} and Manfred Westphal and Rosen, {Eliot M.}",
year = "1999",
month = "8",
doi = "10.1016/S0736-5748(99)00008-8",
language = "English (US)",
volume = "17",
pages = "517--530",
journal = "International Journal of Developmental Neuroscience",
issn = "0736-5748",
publisher = "Elsevier Limited",
number = "5-6",

}

TY - JOUR

T1 - Scatter factor/hepatocyte growth factor (SF/HGF) content and function in human gliomas

AU - Lamszus, Katrin

AU - Laterra, John J

AU - Westphal, Manfred

AU - Rosen, Eliot M.

PY - 1999/8

Y1 - 1999/8

N2 - Scatter factor/hepatocyte growth factor (SF/HGF) is a pleiotrophic cytokine that stimulates motility and invasion of several cancer cell types and induces angiogenesis. Its receptor MET is a transmembrane tyrosine kinase encoded by the C-MET proto-oncogene. To assess the potential relevance of SF/HGF in gliomas we performed functional studies in vivo and in vitro, expression analyses and correlative studies. We showed that both SF/HGF and MET are expressed in gliomas in vivo and are upregulated during transition from low grade to malignant glioma. When SF/HGF cDNA was transfected into glioma cells that expressed the MET receptor the cells formed considerably larger and more vascularized intracranial tumors in vivo than SF/HGF negative control clones. In other glioma cells, which constitutively expressed both SF/HGF and MET, we abolished SF/HGF expression by antisense ribozyme-targeting, which led to a significant decrease in tumorigenicity and tumor growth. In vitro SF/HGF strongly stimulated glioma cell motility and to a lesser degree proliferation. SF/HGF also strongly increased endothelial cell motility in vitro and extracts of tumors derived from SF/HGF-transfected glioma cells were more mitogenic for endothelial cells and more angiogenic in the rat cornea angiogenesis assay than extracts from control tumors. In a three-dimensional in vitro angiogenesis assay basic fibroblast growth factor (bFGF) was found to synergize with either SF/HGF or vascular endothelial growth factor (VEGF) in inducing endothelial capillary-like tubes, whereas neither SF/HGF nor VEGF alone or in combination were effective. Interestingly, while both VEGF and SF/HGF levels appeared to be increased in malignant gliomas compared with low grade ones, this was not the case for bFGF of which biologically relevant levels were already present in low grade gliomas. It thus seems that bFGF alone is insufficient to induce angiogenesis in gliomas but may act synergistically with either VEGF and/or SF/HGF when these become upregulated during malignant progression. In conclusion, we showed that SF/HGF may contribute to glioma progression by stimulating tumor invasiveness, proliferation and neovascularization. Copyright (C) 1999 ISDN.

AB - Scatter factor/hepatocyte growth factor (SF/HGF) is a pleiotrophic cytokine that stimulates motility and invasion of several cancer cell types and induces angiogenesis. Its receptor MET is a transmembrane tyrosine kinase encoded by the C-MET proto-oncogene. To assess the potential relevance of SF/HGF in gliomas we performed functional studies in vivo and in vitro, expression analyses and correlative studies. We showed that both SF/HGF and MET are expressed in gliomas in vivo and are upregulated during transition from low grade to malignant glioma. When SF/HGF cDNA was transfected into glioma cells that expressed the MET receptor the cells formed considerably larger and more vascularized intracranial tumors in vivo than SF/HGF negative control clones. In other glioma cells, which constitutively expressed both SF/HGF and MET, we abolished SF/HGF expression by antisense ribozyme-targeting, which led to a significant decrease in tumorigenicity and tumor growth. In vitro SF/HGF strongly stimulated glioma cell motility and to a lesser degree proliferation. SF/HGF also strongly increased endothelial cell motility in vitro and extracts of tumors derived from SF/HGF-transfected glioma cells were more mitogenic for endothelial cells and more angiogenic in the rat cornea angiogenesis assay than extracts from control tumors. In a three-dimensional in vitro angiogenesis assay basic fibroblast growth factor (bFGF) was found to synergize with either SF/HGF or vascular endothelial growth factor (VEGF) in inducing endothelial capillary-like tubes, whereas neither SF/HGF nor VEGF alone or in combination were effective. Interestingly, while both VEGF and SF/HGF levels appeared to be increased in malignant gliomas compared with low grade ones, this was not the case for bFGF of which biologically relevant levels were already present in low grade gliomas. It thus seems that bFGF alone is insufficient to induce angiogenesis in gliomas but may act synergistically with either VEGF and/or SF/HGF when these become upregulated during malignant progression. In conclusion, we showed that SF/HGF may contribute to glioma progression by stimulating tumor invasiveness, proliferation and neovascularization. Copyright (C) 1999 ISDN.

UR - http://www.scopus.com/inward/record.url?scp=0032844762&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0032844762&partnerID=8YFLogxK

U2 - 10.1016/S0736-5748(99)00008-8

DO - 10.1016/S0736-5748(99)00008-8

M3 - Article

C2 - 10571413

AN - SCOPUS:0032844762

VL - 17

SP - 517

EP - 530

JO - International Journal of Developmental Neuroscience

JF - International Journal of Developmental Neuroscience

SN - 0736-5748

IS - 5-6

ER -