Saturability of esterification pathways of major monohydroxyeicosatetraenoic acids in rat basophilic leukemia cells

Patrick B. Costello, Alan N. Baer, Floyd A. Green

Research output: Contribution to journalArticle

Abstract

The principal monohydroxyeicosatetraenoic acids (HETEs), 5-, 12-, and 15-HETE, which can be produced by rat basophilic leukemia (RBL-1) cells, are also esterified by these cells. Exogenously added 5-, 12-, and 15-HETE were rapidly incorporated as esters in RBL cells, reaching plateau levels within 25 min. In incubations in culture medium with protein added, all three HETEs were essentially completely metabolized within 24 h. 5-HETE was esterified more rapidly and to a greater extent than 12-HETE or 15-HETE when these were incubated together with RBL cells, indicating some degree of selectivity in the esterification pathways. When arachidonic acid (AA) was incubated in increasing concentrations with constant concentrations of 15-HETE and RBL cells, the free 15-HETE concentration increased and esterified 15-HETE concentration decreased markedly at AA: 15-HETE molar ratios above 9. 15-HETE esterification in RBL cells was also markedly inhibited by the polyunsaturated fatty acids, eicosatetraynoic and eicosapentanoic acids, but not by oleic or linoleic acids. In separate experiments with unlabeled and radiolabeled substrates, the extent of incorporation of esterified HETE in RBL cells decreased at higher concentrations of 15-HETE and AA, which showed that the pathway was saturable. The shapes of the curves for these fatty acid inhibitors suggest a concentration-dependent two compartment pathway of esterification. These data indicate that the HETEs and other 20 carbon fatty acid substrates probably compete for activity of a specific arachidonyl-CoA synthetase, which is the first and rate-limiting step for esterification of arachidonic acid by many human cells. Esterified 15-HETE was found to be predominantly in the phosphatidylethanolamine fraction of RBL cell lipids.

Original languageEnglish (US)
Pages (from-to)269-279
Number of pages11
JournalInflammation
Volume15
Issue number4
DOIs
StatePublished - Aug 1 1991

    Fingerprint

ASJC Scopus subject areas

  • Immunology and Allergy
  • Immunology

Cite this