Roles of a novel molecule 'shati' in the development of methamphetamine-induced dependence

Minae Niwa, Toshitaka Nabeshima

Research output: Contribution to journalArticle

Abstract

The ability of drugs of abuse to cause dependence can be viewed as a form of neural plasticity. Recently, we have demonstrated that tumor necrosis factor-α (TNF-α) increases dopamine uptake and inhibits methamphetamine-induced dependence. Moreover, we have identified a novel molecule 'shati' in the nucleus accumbens of mice treated with methamphetamine using the PCR-select cDNA subtraction method and clarified that it is involved in the development of methamphetamine dependence: Treatment with the shati antisense oligonucleotide (shati-AS), which inhibits the expression of shati mRNA, enhanced the methamphetamine-induced hyperlocomotion, sensitization, and conditioned place preference. Further, blockage of shati mRNA by shati-AS potentiated the methamphetamine-induced increase of dopamine overflow and the methamphetamine-induced decrease in dopamine uptake in the nucleus accumbens. Interestingly, treatment with shati-AS also inhibited expression of TNF-α. Transfection of the vector containing shati cDNA into PC12 cells, dramatically induced the expression of shati and TNF-α mRNA, accelerated dopamine uptake, and inhibited the methamphetamine-induced decrease in dopamine uptake. These effects were blocked by neutralizing TNF-α. These results suggest that the functional roles of shati in methamphetamine-induced behavioral changes are mediated through the induction of TNF-α expression which inhibits the methamphetamine-induced increase of dopamine overflow and decrease in dopamine uptake.

Original languageEnglish (US)
Pages (from-to)104-108
Number of pages5
JournalCurrent Neuropharmacology
Volume9
Issue number1
DOIs
Publication statusPublished - 2011

    Fingerprint

Keywords

  • Antiaddictive
  • Dependence
  • Dopamine
  • Methamphetamine
  • Nucleus accumbens
  • Shati
  • Tumor necrosis factor-α
  • Uptake

ASJC Scopus subject areas

  • Clinical Neurology
  • Pharmacology (medical)
  • Psychiatry and Mental health
  • Neurology
  • Pharmacology

Cite this