ROLE OF HYDROXYL‐BEARING AMINO ACIDS IN DIFFERENTIALLY TUNING THE ABSORPTION SPECTRA OF THE HUMAN RED AND GREEN CONE PIGMENTS

Shannath L. Merbs, Jeremy Nathans

Research output: Contribution to journalArticlepeer-review

Abstract

The human red and green cone pigments differ at either 15 or 16 amino acids, depending upon which polymorphic variants are compared. Seven of these amino acid differences involve the introduction or removal of a hydroxyl group. One of these differences, a substitution of alanine for senne at position 80, was found previously to produce a 5 nm blue shift. To determine the role of the remaining six hydroxyl group differences in tuning the absorption spectra of the human red and green pigments, we have studied six site‐directed mutants in which single amino acids from the green pigment have been substituted for the corresponding residues in the red pigment. Blue shifts of 7 and 14 nm were observed upon substitution of phenylalanine for tyrosine at position 277 and alanine for threonine at position 285, respectively. Single substitutions at positions 65, 230, 233, and 309 produced spectral shifts of 1 nm or less. These data are in good agreement with a model based upon sequence comparisons among primate pigments and with the properties of site‐directed mutants of bovine rhodopsin. Nonadditive effects observed in comparing the absorption spectra of red‐green hybrid pigments remain to be explained.

Original languageEnglish (US)
Pages (from-to)706-710
Number of pages5
JournalPhotochemistry and Photobiology
Volume58
Issue number5
DOIs
StatePublished - Nov 1993

ASJC Scopus subject areas

  • Biochemistry
  • Physical and Theoretical Chemistry

Fingerprint Dive into the research topics of 'ROLE OF HYDROXYL‐BEARING AMINO ACIDS IN DIFFERENTIALLY TUNING THE ABSORPTION SPECTRA OF THE HUMAN RED AND GREEN CONE PIGMENTS'. Together they form a unique fingerprint.

Cite this