Abstract
We have previously shown that thrombin-induced endothelial cell barrier dysfunction involves cytoskeletal rearrangement and contraction, and we have elucidated the important role of endothelial cell myosin light chain kinase and the actin- and myosin-binding protein caldesmon. We evaluated the contribution of calmodulin (CaM) kinase II and extracellular signal-regulated kinase (ERK) activation in thrombin-mediated bovine pulmonary artery endothelial cell contraction and barrier dysfunction. Similar to thrombin, infection with a constitutively active adenoviral a-CaM kinase II construct induced significant ERK activation, indicating that CaM kinase II activation lies upstream of ERK. Thrombin-induced ERK-dependent caldesmon phosphorylation (Ser789) was inhibited by either KN-93, a specific CaM kinase II inhibitor, or U0126, an inhibitor of MEK activation. Immunofluorescence microscopy studies revealed phosphocaldesmon colocalization within thrombin-induced actin stress fibers. Pretreatment with either U0126 or KN-93 attenuated thrombin-mediated cytoskeletal rearrangement and evoked declines in transendothelial electrical resistance while reversing thrombin-induced dissociation of myosin from nondenaturing caldesmon immunoprecipitates. These results strongly suggest the involvement of CaM kinase II and ERK activities in thrombin-mediated caldesmon phosphorylation and both contractile and barrier regulation.
Original language | English (US) |
---|---|
Pages (from-to) | L43-L54 |
Journal | American Journal of Physiology - Lung Cellular and Molecular Physiology |
Volume | 285 |
Issue number | 1 29-1 |
DOIs | |
State | Published - Jul 1 2003 |
Keywords
- Caldesmon
- Extracellular signal-regulated kinase
- Thrombin
- Transendothelial electrical resistance
ASJC Scopus subject areas
- Physiology
- Pulmonary and Respiratory Medicine
- Physiology (medical)
- Cell Biology