Rod sensitivity during Xenopus development

Wei Hong Xiong, King-Wai Yau

Research output: Contribution to journalArticle

Abstract

We have measured the sensitivity of rod photoreceptors from overnight-dark-adapted Xenopus laevis through developmental stages 46-66 into adulthood by using suction-pipette recording. The dark current increased gradually from ∼5 pA at stage 46 to ∼20 pA at stage 57, compared with an adult (metamorphosed) current of ∼35 pA. This increase in dark current largely paralleled the progressive increase in length and diameter of the rod outer segment (ROS). Throughout stages 46-66, the dark current increased approximately linearly with ROS surface area. At stage 53, there was a steep (∼10-fold) increase in the rod flash sensitivity, accompanied by a steep increase in the time-to-peak of the half-saturated flash response. This covariance of sensitivity and time-to-peak suggested a change in the state of adaptation of rods at stage 53 and thereafter. When the isolated retina was preincubated with 11-cis-retinal, the flash sensitivity and the response time-to-peak of rods before stage 53 became similar to those at or after stage 53, suggesting that the presence of free opsin (i.e., visual pigment without chromophore) in rods before stage 53 was responsible for the adapted state (low sensitivity and short time-to-peak). By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22-28% of rod opsin in stage 50-52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation. When continuously dark adapted for 7 d or longer, however, even tadpoles before stage 53 yielded rods with similar flash sensitivity and response time-to-peak as those of later-stage animals. In conclusion, it appears that chromophore regeneration is very slow in tadpoles before stage 53, but this regeneration becomes much more efficient at stage 53. A similar delay in the maturity of chromophore regeneration may partially underlie the low sensitivity of rods observed in newborn mammals, including human infants.

Original languageEnglish (US)
Pages (from-to)817-827
Number of pages11
JournalJournal of General Physiology
Volume120
Issue number6
DOIs
StatePublished - Dec 1 2002

Fingerprint

Xenopus
Rod Cell Outer Segment
Larva
Regeneration
Reaction Time
Rod Opsins
Retinaldehyde
Opsins
Dark Adaptation
Retinal Rod Photoreceptor Cells
Retinal Pigments
Xenopus laevis
Suction
Retina
Mammals

Keywords

  • Rat
  • Retinaldehyde
  • Vision

ASJC Scopus subject areas

  • Physiology

Cite this

Rod sensitivity during Xenopus development. / Xiong, Wei Hong; Yau, King-Wai.

In: Journal of General Physiology, Vol. 120, No. 6, 01.12.2002, p. 817-827.

Research output: Contribution to journalArticle

Xiong, Wei Hong ; Yau, King-Wai. / Rod sensitivity during Xenopus development. In: Journal of General Physiology. 2002 ; Vol. 120, No. 6. pp. 817-827.
@article{ec96a64c93394565844fd836175fe16c,
title = "Rod sensitivity during Xenopus development",
abstract = "We have measured the sensitivity of rod photoreceptors from overnight-dark-adapted Xenopus laevis through developmental stages 46-66 into adulthood by using suction-pipette recording. The dark current increased gradually from ∼5 pA at stage 46 to ∼20 pA at stage 57, compared with an adult (metamorphosed) current of ∼35 pA. This increase in dark current largely paralleled the progressive increase in length and diameter of the rod outer segment (ROS). Throughout stages 46-66, the dark current increased approximately linearly with ROS surface area. At stage 53, there was a steep (∼10-fold) increase in the rod flash sensitivity, accompanied by a steep increase in the time-to-peak of the half-saturated flash response. This covariance of sensitivity and time-to-peak suggested a change in the state of adaptation of rods at stage 53 and thereafter. When the isolated retina was preincubated with 11-cis-retinal, the flash sensitivity and the response time-to-peak of rods before stage 53 became similar to those at or after stage 53, suggesting that the presence of free opsin (i.e., visual pigment without chromophore) in rods before stage 53 was responsible for the adapted state (low sensitivity and short time-to-peak). By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22-28{\%} of rod opsin in stage 50-52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation. When continuously dark adapted for 7 d or longer, however, even tadpoles before stage 53 yielded rods with similar flash sensitivity and response time-to-peak as those of later-stage animals. In conclusion, it appears that chromophore regeneration is very slow in tadpoles before stage 53, but this regeneration becomes much more efficient at stage 53. A similar delay in the maturity of chromophore regeneration may partially underlie the low sensitivity of rods observed in newborn mammals, including human infants.",
keywords = "Rat, Retinaldehyde, Vision",
author = "Xiong, {Wei Hong} and King-Wai Yau",
year = "2002",
month = "12",
day = "1",
doi = "10.1085/jgp.20028702",
language = "English (US)",
volume = "120",
pages = "817--827",
journal = "Journal of General Physiology",
issn = "0022-1295",
publisher = "Rockefeller University Press",
number = "6",

}

TY - JOUR

T1 - Rod sensitivity during Xenopus development

AU - Xiong, Wei Hong

AU - Yau, King-Wai

PY - 2002/12/1

Y1 - 2002/12/1

N2 - We have measured the sensitivity of rod photoreceptors from overnight-dark-adapted Xenopus laevis through developmental stages 46-66 into adulthood by using suction-pipette recording. The dark current increased gradually from ∼5 pA at stage 46 to ∼20 pA at stage 57, compared with an adult (metamorphosed) current of ∼35 pA. This increase in dark current largely paralleled the progressive increase in length and diameter of the rod outer segment (ROS). Throughout stages 46-66, the dark current increased approximately linearly with ROS surface area. At stage 53, there was a steep (∼10-fold) increase in the rod flash sensitivity, accompanied by a steep increase in the time-to-peak of the half-saturated flash response. This covariance of sensitivity and time-to-peak suggested a change in the state of adaptation of rods at stage 53 and thereafter. When the isolated retina was preincubated with 11-cis-retinal, the flash sensitivity and the response time-to-peak of rods before stage 53 became similar to those at or after stage 53, suggesting that the presence of free opsin (i.e., visual pigment without chromophore) in rods before stage 53 was responsible for the adapted state (low sensitivity and short time-to-peak). By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22-28% of rod opsin in stage 50-52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation. When continuously dark adapted for 7 d or longer, however, even tadpoles before stage 53 yielded rods with similar flash sensitivity and response time-to-peak as those of later-stage animals. In conclusion, it appears that chromophore regeneration is very slow in tadpoles before stage 53, but this regeneration becomes much more efficient at stage 53. A similar delay in the maturity of chromophore regeneration may partially underlie the low sensitivity of rods observed in newborn mammals, including human infants.

AB - We have measured the sensitivity of rod photoreceptors from overnight-dark-adapted Xenopus laevis through developmental stages 46-66 into adulthood by using suction-pipette recording. The dark current increased gradually from ∼5 pA at stage 46 to ∼20 pA at stage 57, compared with an adult (metamorphosed) current of ∼35 pA. This increase in dark current largely paralleled the progressive increase in length and diameter of the rod outer segment (ROS). Throughout stages 46-66, the dark current increased approximately linearly with ROS surface area. At stage 53, there was a steep (∼10-fold) increase in the rod flash sensitivity, accompanied by a steep increase in the time-to-peak of the half-saturated flash response. This covariance of sensitivity and time-to-peak suggested a change in the state of adaptation of rods at stage 53 and thereafter. When the isolated retina was preincubated with 11-cis-retinal, the flash sensitivity and the response time-to-peak of rods before stage 53 became similar to those at or after stage 53, suggesting that the presence of free opsin (i.e., visual pigment without chromophore) in rods before stage 53 was responsible for the adapted state (low sensitivity and short time-to-peak). By comparing the response sensitivity before stage 53 to the sensitivity at/after stage 53 measured from rods that had been subjected to various known bleaches, we estimated that 22-28% of rod opsin in stage 50-52 tadpoles (i.e., before stage 53) was devoid of chromophore despite overnight dark-adaptation. When continuously dark adapted for 7 d or longer, however, even tadpoles before stage 53 yielded rods with similar flash sensitivity and response time-to-peak as those of later-stage animals. In conclusion, it appears that chromophore regeneration is very slow in tadpoles before stage 53, but this regeneration becomes much more efficient at stage 53. A similar delay in the maturity of chromophore regeneration may partially underlie the low sensitivity of rods observed in newborn mammals, including human infants.

KW - Rat

KW - Retinaldehyde

KW - Vision

UR - http://www.scopus.com/inward/record.url?scp=0036898101&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0036898101&partnerID=8YFLogxK

U2 - 10.1085/jgp.20028702

DO - 10.1085/jgp.20028702

M3 - Article

C2 - 12451051

AN - SCOPUS:0036898101

VL - 120

SP - 817

EP - 827

JO - Journal of General Physiology

JF - Journal of General Physiology

SN - 0022-1295

IS - 6

ER -