Robustness of VOR and OKR adaptation under kinematics and dynamics transformations

Adrian Haith, Sethu Vijayakumar

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Many computational models of vestibulo-ocular reflex (VOR) adaptation have been proposed, however none of these models have explicitly highlighted the distinction between adaptation to dynamics transformations, in which the intrinsic properties of the oculomotor plant change, and kinematic transformations, in which the extrinsic relationship between head velocity and desired eye velocity changes (most VOR adaptation experiments use kinematic transformations to manipulate the desired response). We show that whether a transformation is kinematic or dynamic in nature has a strong impact upon the speed and stability of learning for different control architectures. Specifically, models based on a purely feedforward control architecture, as is commonly used in feedback-error learning (FEL), are guaranteed to be stable under kinematic transformations, but are susceptible to slow convergence and instability under dynamics transformations. On the other hand, models based on a recurrent cerebellar architecture [7] perform well under dynamics but not kinematics transformations. We apply this insight to derive a new model of the VOR/OKR system which is stable against transformations of both the plant dynamics and the task kinematics.

Original languageEnglish (US)
Title of host publication2007 IEEE 6th International Conference on Development and Learning, ICDL
Pages37-42
Number of pages6
DOIs
StatePublished - Dec 1 2007
Externally publishedYes
Event2007 IEEE 6th International Conference on Development and Learning, ICDL - London, United Kingdom
Duration: Jul 11 2007Jul 13 2007

Publication series

Name2007 IEEE 6th International Conference on Development and Learning, ICDL

Other

Other2007 IEEE 6th International Conference on Development and Learning, ICDL
Country/TerritoryUnited Kingdom
CityLondon
Period7/11/077/13/07

ASJC Scopus subject areas

  • Computational Theory and Mathematics
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Robustness of VOR and OKR adaptation under kinematics and dynamics transformations'. Together they form a unique fingerprint.

Cite this