Robust quantitative assessment of trabecular microarchitecture in extremity cone-beam CT using optimized segmentation algorithms

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Purpose: In-vivo evaluation of bone microarchitecture remains challenging because of limited resolution of conventional orthopaedic imaging modalities. We investigate the performance of flat-panel detector extremity Cone-Beam CT (CBCT) in quantitative analysis of trabecular bone. To enable accurate morphometry of fine trabecular bone architecture, advanced CBCT pre-processing and segmentation algorithms are developed. Methods: The study involved 35 transilliac bone biopsy samples imaged on extremity CBCT (voxel size 75 μm, imaging dose ∼13 mGy) and gold standard μCT (voxel size 7.67 μm). CBCT image segmentation was performed using (i) global Otsu's thresholding, (ii) Bernsen's local thresholding, (iii) Bernsen's local thresholding with additional histogram-based global pre-thresholding, and (iv) the same as (iii) but combined with contrast enhancement using a Laplacian Pyramid. Correlations between extremity CBCT with the different segmentation algorithms and gold standard μCT were investigated for measurements of Bone Volume over Total Volume (BV/TV), Trabecular Thickness (Tb.Th), Trabecular Spacing (Tb.Sp), and Trabecular Number (Tb.N). Results: The combination of local thresholding with global pre-thresholding and Laplacian contrast enhancement outperformed other CBCT segmentation methods. Using this optimal segmentation scheme, strong correlation between extremity CBCT and μCT was achieved, with Pearson coefficients of 0.93 for BV/TV, 0.89 for Tb.Th, 0.91 for Tb.Sp, and 0.88 for Tb.N (all results statistically significant). Compared to a simple global CBCT segmentation using Otsu's algorithm, the advanced segmentation method achieved ∼20% improvement in the correlation coefficient for Tb.Th and ∼50% improvement for Tb.Sp. Conclusions: Extremity CBCT combined with advanced image pre-processing and segmentation achieves high correlation with gold standard μCT in measurements of trabecular microstructure. This motivates ongoing development of clinical applications of extremity CBCT in in-vivo evaluation of bone health e.g. in early osteoarthritis and osteoporosis.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2018
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor Gimi, Andrzej Krol
PublisherSPIE
ISBN (Electronic)9781510616455
DOIs
StatePublished - 2018
EventMedical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging - Houston, United States
Duration: Feb 11 2018Feb 13 2018

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume10578
ISSN (Print)1605-7422

Other

OtherMedical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging
Country/TerritoryUnited States
CityHouston
Period2/11/182/13/18

Keywords

  • BV/TV
  • Laplacian pyramid
  • Tb.N
  • Tb.Sp
  • Tb.Th
  • Trabecular bone
  • Trabecular segmentation
  • cone-beam CT

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Robust quantitative assessment of trabecular microarchitecture in extremity cone-beam CT using optimized segmentation algorithms'. Together they form a unique fingerprint.

Cite this