Robust motion estimation and structure recovery from endoscopic image sequences with an adaptive scale Kernel Consensus estimator

Hanzi Wang, Daniel Mirota, Masaru Ishii, Gregory D. Hager

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

To correctly estimate the camera motion parameters and reconstruct the structure of the surrounding tissues from endoscopic image sequences, we need not only to deal with outliers (e.g., mismatches), which may involve more than 50% of the data, but also to accurately distinguish inliers (correct matches) from outliers. In this paper, we propose a new robust estimator, Adaptive Scale Kernel Consensus (ASKC), which can tolerate more than 50 percent outliers while automatically estimating the scale of inliers. With ASKC, we develop a reliable feature tracking algorithm. This, in turn, allows us to develop a complete system for estimating endoscopic camera motion and reconstructing anatomical structures from endoscopic image sequences. Preliminary experiments on endoscopic sinus imagery have achieved promising results.

Original languageEnglish (US)
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: Jun 23 2008Jun 28 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Other

Other26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period6/23/086/28/08

ASJC Scopus subject areas

  • Computer Vision and Pattern Recognition
  • Control and Systems Engineering

Fingerprint

Dive into the research topics of 'Robust motion estimation and structure recovery from endoscopic image sequences with an adaptive scale Kernel Consensus estimator'. Together they form a unique fingerprint.

Cite this