Robotic delivery of complex radiation volumes for small animal research

Mohammad Matinfar, Iulian Iordachita, John Wong, Peter Kazanzides

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

The Small Animal Radiation Research Platform (SARRP) is a novel and complete system capable of delivering multidirectional (focal), kilo-voltage radiation fields to targets in small animals under robotic control using cone-beam CT (CBCT) image guidance. The capability of the SARRP to deliver highly focused beams to multiple animal models provides new research opportunities that more realistically bridge laboratory research and clinical translation. This paper describes the design and operation of the SARRP for precise radiation delivery. Different delivery procedures are presented which enable the system to radiate through a series of points, representative of a complex shape. A particularly interesting case is shell dose irradiation, where the goal is to deliver a high dose of radiation to the shape surface, with minimal dose to the shape interior. The ability to deliver a dose shell allows mechanistic research of how a tumor interacts with its microenvironment to sustain its growth and lead to its resistance or recurrence.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Robotics and Automation, ICRA 2010
Pages2056-2061
Number of pages6
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Robotics and Automation, ICRA 2010 - Anchorage, AK, United States
Duration: May 3 2010May 7 2010

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
ISSN (Print)1050-4729

Other

Other2010 IEEE International Conference on Robotics and Automation, ICRA 2010
CountryUnited States
CityAnchorage, AK
Period5/3/105/7/10

ASJC Scopus subject areas

  • Software
  • Control and Systems Engineering
  • Artificial Intelligence
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'Robotic delivery of complex radiation volumes for small animal research'. Together they form a unique fingerprint.

Cite this