Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors

Michael G. Kearse, Daniel H. Goldman, Jiou Choi, Chike Nwaezeapu, Dongming Liang, Katelyn M. Green, Aaron C. Goldstrohm, Peter K. Todd, Rachel Green, Jeremy E. Wilusz

Research output: Contribution to journalArticle

Abstract

Aberrant translation initiation at non-AUG start codons is associated with multiple cancers and neurodegenerative diseases. Nevertheless, how non-AUG translation may be regulated differently from canonical translation is poorly understood. Here, we used start codon-specific reporters and ribosome profiling to characterize how translation from non-AUG start codons responds to protein synthesis inhibitors in human cells. These analyses surprisingly revealed that translation of multiple non-AUG-encoded reporters and the endogenous GUG-encoded DAP5 (eIF4G2/p97) mRNA is resistant to cycloheximide (CHX), a translation inhibitor that severely slows but does not completely abrogate elongation. Our data suggest that slowly elongating ribosomes can lead to queuing/stacking of scanning preinitiation complexes (PICs), preferentially enhancing recognition of weak non-AUG start codons. Consistent with this model, limiting PIC formation or scanning sensitizes non-AUG translation to CHX. We further found that non-AUG translation is resistant to other inhibitors that target ribosomes within the coding sequence but not those targeting newly initiated ribosomes. Together, these data indicate that ribosome queuing enables mRNAs with poor initiation context-namely, those with non-AUG start codons-to be resistant to pharmacological translation inhibitors at concentrations that robustly inhibit global translation.

Original languageEnglish (US)
Pages (from-to)871-885
Number of pages15
JournalGenes and Development
Volume33
Issue number13-14
DOIs
StatePublished - Jul 2019

Keywords

  • Cycloheximide
  • Near-cognate
  • RAN translation
  • Start codon
  • Translation initiation
  • Translational control

ASJC Scopus subject areas

  • Genetics
  • Developmental Biology

Fingerprint Dive into the research topics of 'Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors'. Together they form a unique fingerprint.

  • Cite this

    Kearse, M. G., Goldman, D. H., Choi, J., Nwaezeapu, C., Liang, D., Green, K. M., Goldstrohm, A. C., Todd, P. K., Green, R., & Wilusz, J. E. (2019). Ribosome queuing enables non-AUG translation to be resistant to multiple protein synthesis inhibitors. Genes and Development, 33(13-14), 871-885. https://doi.org/10.1101/gad.324715.119