Retinal targets for calmodulin include proteins implicated in synaptic transmission

Xian Zhong Shawn Xu, Paul D. Wes, Hua Chen, Hong Sheng Li, Mujun Yu, Stewart Morgan, Yuru Liu, Craig Montell

Research output: Contribution to journalArticlepeer-review

82 Scopus citations


Ca2+ influxes regulate multiple events in photoreceptor cells including phototransduction and synaptic transmission. An important Ca2+ sensor in Drosophila vision appears to be calmodulin since a reduction in levels of retinal calmodulin causes defects in adaptation and termination of the photoresponse. These functions of calmodulin appear to be mediated, at least in part, by four previously identified calmodulin-binding proteins: the TRP and TRPL ion channels, NINAC and INAD. To identify additional calmodulin- binding proteins that may function in phototransduction and/or synaptic transmission, we conducted a screen for retinal calmodulin-binding proteins. We found eight additional calmodulin-binding proteins that were expressed in the Drosophila retina. These included six targets that were related to proteins implicated in synaptic transmission. Among these six were a homolog of the diacylglycerol-binding protein, UNC13, and a protein, CRAG, related to Rab3 GTPase exchange proteins. Two other calmodulin-binding proteins included Pollux, a protein with similarity to a portion of a yeast Rab GTPase activating protein, and Calossin, an enormous protein of unknown function conserved throughout animal phylogeny. Thus, it appears that calmodulin functions as a Ca2+ sensor for a broad diversity of retinal proteins, some of which are implicated in synaptic transmission.

Original languageEnglish (US)
Pages (from-to)31297-31307
Number of pages11
JournalJournal of Biological Chemistry
Issue number47
StatePublished - Nov 20 1998

ASJC Scopus subject areas

  • Biochemistry


Dive into the research topics of 'Retinal targets for calmodulin include proteins implicated in synaptic transmission'. Together they form a unique fingerprint.

Cite this