Responses in area V4 depend on the spatial relationship between stimulus and attention

Charles E. Connor, Jack L. Gallant, Dean C. Preddie, David C. Van Essen

Research output: Contribution to journalArticlepeer-review

188 Scopus citations

Abstract

1. We studied the spatial interaction between stimulus and attention in macaque area V4. Monkeys were required to fixate a small spot while continuously attending to a ring-shaped target within a large array of identical rings. Meanwhile, the response of the V4 cell under study was tested by flashing behaviorally irrelevant bar stimuli in the cell's classical receptive field (CRF). The location of the attended ring was varied across four positions surrounding the CRF, and the location of the bar stimulus was varied across five positions spanning the CRF. 2. Response strength depended on two aspects of the spatial relationship between the stimulus driving the cell (the bar) and the position of attention (the target ring). First, for 49% of the cells studied, responses were greater for bar stimuli near the attended ring; i.e., the receptive field profile shifted toward the attentional focus. Second, for 84% of the cells, the overall response level depended on the direction in which attention lay relative to the stimulus in the CRF (e.g., to the left, right, above, or below). 3. This study confirms a key prediction of spatial models of attention, which postulate enhanced processing of all stimuli near the attentional focus. It also introduces the novel finding that responses are influenced by the relative direction of attention. This result indicates that area V4 carries information about the spatial relationship between visual stimuli and attention.

Original languageEnglish (US)
Pages (from-to)1306-1308
Number of pages3
JournalJournal of neurophysiology
Volume75
Issue number3
DOIs
StatePublished - Mar 1996
Externally publishedYes

ASJC Scopus subject areas

  • General Neuroscience
  • Physiology

Fingerprint

Dive into the research topics of 'Responses in area V4 depend on the spatial relationship between stimulus and attention'. Together they form a unique fingerprint.

Cite this