Reproducibility and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric implications

Javier Moreno-Montañés, Miguel J. Maldonado, Noelia García, Loreto Mendiluce, Pio J. García-Gómez, María Seguí-Gómez

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

PURPOSE. TO assess the reproducibility of the ocular response analyzer (ORA) in nonoperated eyes and the impact of corneal biomechanical properties on intraocular pressure (IOP) measurements in normal and glaucomatous eyes. METHODS. In the reliability study, two independent examiners obtained repeated ORA measurements in 30 eyes. In the clinical study, the examiners analyzed ORA and IOP-Goldmann values from 220 normal and 42 glaucomatous eyes. In both studies, Goldmann-correlated IOP measurement (IOP-ORAg), corneal-compensated IOP (IOP-ORAc), corneal hysteresis (CH), and corneal resistance factor (CRF) were evaluated. IOP differences of 3 mm Hg or greater between the IOP-ORAc and IOP-ORAg were considered outcome significant. RESULTS. Intraexaminer intraclass correlation coefficients and interexaminer concordance correlation coefficients ranged from 0.78 to 0.93 and from 0.81 to 0.93, respectively, for all parameters. CH reproducibility was highest, and the IOP-ORAg readings were lowest. The median IOP was 16 mm Hg with the Goldmann tonometer, 14.5 mm Hg with IOP-ORAg (P <0.001), and 15.7 mm Hg with IOP-ORAc (P <0.001). Outcome-significant results were found in 77 eyes (29.38%). The IOP-ORAc, CH, and CRF were correlated with age (r = 0.22, P = 0.001; r = -0.23, P = 0.001; r = -0.14, P = 0.02, respectively), but not the IOP-ORAg or IOP-Goldmann. CONCLUSIONS. The ORA provides reproducible corneal biomechanical and IOP measurements in nonoperated eyes. Considering the effect of ORA, corneal biomechanical metrics produces an outcome-significant IOP adjustment in at least one quarter of glaucomatous and normal eyes undergoing noncontact tonometry. Corneal viscoelasticity (CH) and resistance (CRF) appear to decrease minimally with increasing age in healthy adults.

Original languageEnglish (US)
Pages (from-to)968-974
Number of pages7
JournalInvestigative Ophthalmology and Visual Science
Volume49
Issue number3
DOIs
StatePublished - Mar 2008

ASJC Scopus subject areas

  • Ophthalmology
  • Sensory Systems
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Reproducibility and clinical relevance of the ocular response analyzer in nonoperated eyes: corneal biomechanical and tonometric implications'. Together they form a unique fingerprint.

Cite this