Repair of Retinal Degeneration following Ex Vivo Minicircle DNA Gene Therapy and Transplantation of Corrected Photoreceptor Progenitors

Alona O. Barnea-Cramer, Mandeep Singh, Dominik Fischer, Samantha De Silva, Michelle E. McClements, Alun R. Barnard, Robert E. MacLaren

Research output: Contribution to journalArticle


The authors describe retinal reconstruction and restoration of visual function in heritably blind mice missing the rhodopsin gene using a novel method of ex vivo gene therapy and cell transplantation. Photoreceptor precursors with the same chromosomal genetic mutation were treated ex vivo using minicircle DNA, a non-viral technique that does not present the packaging limitations of adeno-associated virus (AAV) vectors. Following transplantation, genetically modified cells reconstructed a functional retina and supported vision in blind mice harboring the same founder gene mutation. Gene delivery by minicircles showed comparable long-term efficiency to AAV in delivering the missing gene, representing the first non-viral system for robust treatment of photoreceptors. This important proof-of-concept finding provides an innovative convergence of cell and gene therapies for the treatment of hereditary neurodegenerative disease and may be applied in future studies toward ex vivo correction of patient-specific cells to provide an autologous source of tissue to replace lost photoreceptors in inherited retinal blindness. This is the first report using minicircles in photoreceptor progenitors and the first to transplant corrected photoreceptor precursors to restore vision in blind animals.

Original languageEnglish (US)
JournalMolecular Therapy
StateAccepted/In press - Jan 1 2020



  • cell delivery
  • cell therapy
  • correction
  • degeneration
  • gene
  • gene therapy
  • photoreceptors
  • regeneration
  • retina

ASJC Scopus subject areas

  • Molecular Medicine
  • Molecular Biology
  • Genetics
  • Pharmacology
  • Drug Discovery

Cite this