Removing Contaminants from Metagenomic Databases

Jennifer Lu, Steven L. Salzberg

Research output: Contribution to journalArticlepeer-review

Abstract

Metagenomic sequencing of patient samples is a very promising method for the diagnosis of human infections. Sequencing has the ability to capture all the DNA or RNA from pathogenic organisms in a human sample. However, complete and accurate characterization of the sequence, including identification of any pathogens, depends on the availability and quality of genomes for comparison. Thousands of genomes are now available, and as these numbers grow, the power of metagenomic sequencing for diagnosis should increase. However, recent studies have exposed the presence of contamination in published genomes, which when used for diagnosis increases the risk of falsely identifying the wrong pathogen.To address this problem, we have developed a bioinformatics system for eliminating contamination as well as low-complexity genomic sequences in the draft genomes of eukaryotic pathogens. We applied this software to identify and remove human, bacterial, archaeal, and viral sequences present in a comprehensive database of all sequenced eukaryotic pathogen genomes. We also removed low-complexity genomic sequences, another source of false positives. Using this pipeline, we have produced a database of “clean” eukaryotic pathogen genomes for use with bioinformatics classification and analysis tools. We demonstrate that when attempting to find eukaryotic pathogens in metagenomic samples, the new database provides better sensitivity than one using the original genomes while offering a dramatic reduction in false positives.

Original languageEnglish (US)
JournalUnknown Journal
DOIs
StatePublished - Feb 8 2018

ASJC Scopus subject areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • Immunology and Microbiology(all)
  • Neuroscience(all)
  • Pharmacology, Toxicology and Pharmaceutics(all)

Fingerprint Dive into the research topics of 'Removing Contaminants from Metagenomic Databases'. Together they form a unique fingerprint.

Cite this