Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum

Carlos D. Aizenman, David J. Linden

Research output: Contribution to journalArticlepeer-review


Current-clamp recordings were made from the deep cerebellar nuclei (DCN) of 12- to 15-day-old rats to understand the factors that mediate intrinsic spontaneous firing patterns. All of the cells recorded were spontaneously active with spiking patterns ranging continuously from regular spiking to spontaneous bursting with the former predominating. A robust rebound depolarization (RD) leading to a Na+ spike burst was elicited after the offset of hyperpolarizing current injection. The voltage and time dependence of the RD was consistent with mediation by low-threshold voltage-gated Ca2+ channels. In addition, induction of a RD also may be affected by activation of a hyperpolarization-activated cation current, I(h). A RD could be evoked efficiently after brief high-frequency bursts of inhibitory postsynaptic potentials (IPSPs) induced by stimulation of Purkinje cell axons. IPSP-driven RD8 were typically much larger and longer than those elicited by direct hyperpolarizing pulses of approximately matched amplitude and duration. Intracellular perfusion of the Ca2+ buffer bis-(o-aminophenoxy)-N,N,N',N'- tetraacetic acid (BAPTA) dramatically enhanced the RD and its associated spiking, sometimes leading to a plateau potential that lasted several hundred milliseconds. The effects of BAPTA could be mimicked partly by application of apamin, a blocker of small conductance Ca2+-gated K+ channels, but not by paxilline, which blocks large conductance Ca2+gated K+ channels. Application of both BAPTA and apamin, but not paxilline, caused cells that were regularly spiking to burst spontaneously. Taken together, our data suggest that there is a strong relationship between the ability of DCN cells to elicit a RD and their tendency burst spontaneously. The RD can be triggered by the opening of T-type Ca2+ channels with an additional contribution of hyperpolarization-activated current I(h). RD duration is regulated by small-conductance Ca2+-gated K+ channels. The RD also is modulated tonically by inhibitory inputs. All of these factors are in turn subject to alteration by extrinsic modulatory neurotransmitters and are, at least in part, responsible for determining the firing modes of DCN neurons.

Original languageEnglish (US)
Pages (from-to)1697-1709
Number of pages13
JournalJournal of neurophysiology
Issue number4
StatePublished - 1999

ASJC Scopus subject areas

  • Neuroscience(all)
  • Physiology


Dive into the research topics of 'Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum'. Together they form a unique fingerprint.

Cite this