Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts

Honglin Chen, Jian Huang, Frederick Y. Wu, Gangling Liao, Lindsey Hutt-Fletcher, S. Diane Hayward

Research output: Contribution to journalArticlepeer-review

Abstract

The Epstein-Barr virus (EBV) BamHI-A rightward transcripts, or BARTs, are a family of mRNAs expressed in all EBV latency programs, including EBV-infected B cells in healthy carriers. Despite their ubiquitous expression, the regulation and biological function of BARTs are still unclear. In this study, the BART 5′ termini were characterized by using a procedure that selects capped, full-length mRNAs. Two TATA-less promoter regions, designated P1 and P2, were mapped. P1 had relatively high basal activity in both epithelial and B cells, whereas P2 exhibited higher activity in epithelial cells. Upon EBV infection of B cells, transcription from P1 was detected soon after infection, while expression from P2 was delayed. Promoter-reporter assays in transiently transfected cells revealed that P1 and P2 were differentially regulated. Interferon regulatory factor 7 (IRF7) and IRF5 negatively regulated P1 activity. c-Myc and C/EBP family members positively regulated P2. Regulation of P2 by C/EBPs was characterized by electrophoretic mobility shift assay, chromatin immunoprecipitation, and reporter assays. More-abundant BART expression in epithelial cells correlated with the relative expression of positive and negative regulators in these cells.

Original languageEnglish (US)
Pages (from-to)1724-1733
Number of pages10
JournalJournal of virology
Volume79
Issue number3
DOIs
StatePublished - Feb 2005

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'Regulation of expression of the Epstein-Barr virus BamHI-A rightward transcripts'. Together they form a unique fingerprint.

Cite this