Regulation of cell growth by vitreous humour

G. A. Lutty, R. J. Mello, C. Chandler

Research output: Contribution to journalArticlepeer-review

47 Scopus citations

Abstract

Extracts of normal vitreous have been found to inhibit angiogenesis in two animal models: tumour-induced neovascularization in the rabbit corneal micropocket and retinal extract-induced angiogenesis in the chick chorioallantoic membrane assay. Using in vitro assays, we have found recently that an extract of bovine vitreous, free of hyaluronic acid, inhibits proliferation of cells in the aortic wall, i.e. endothelium and smooth muscle cells, as well as capillary and corneal endothelium. The inhibition is dose-dependent, as determined by either cell count or [3H]thymidine incorporation, and not due to cytotoxicity, as demonstrated with a double-label thymidine assay. The inhibitor is trypsin-sensitive and heat-stable (95°C for 10 min). Conversely, proliferation of pericytes, lens epithelium and fibroblasts (dermal and corneal) was stimulated by the vitreous extract. This mitogenic activity was heat-labile. Growth of pigment epithelium and several tumour cell lines was unaffected. The data demonstrate that normal vitreous contains a heat-stable growth inhibitor specific for endothelium and smooth muscle cells, and a non-specific heat-labile mitogen. The paradoxical effect of this antiangiogenic factor on arterial and capillary contractile cells, smooth muscle and pericytes, suggests a basic difference in the regulation of the two vasculatures. The results suggest that a substance in normal vitreous may be important in controlling neovascularization that results from diabetic and other retinopathies, and could be useful for inhibiting tumour-induced angiogenesis.

Original languageEnglish (US)
Pages (from-to)53-65
Number of pages13
JournalJournal of cell science
VolumeVOL. 76
StatePublished - 1985

ASJC Scopus subject areas

  • Cell Biology

Fingerprint

Dive into the research topics of 'Regulation of cell growth by vitreous humour'. Together they form a unique fingerprint.

Cite this