Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung

Tsutomu Miyauchi, Richard L. Wahl

Research output: Contribution to journalArticle

Abstract

2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is a promising imaging procedure for detecting primary and metastatic cancer in the lungs. We have, however, failed to detect some small tumors in the lower lobes of the lungs. This study aimed to determine whether increase 18F background activity in the dependent lower lungs is present, which could make lesion detection more difficult. We measured the standardized uptake values (SUVs) for FDG of normal lung remote from the nodular lesion in 16 patients with newly diagnosed untreated lung lesions stronlgy suspected to represent non-small cell lung cancers. In addition, 15 patients with known or suspected primary breast cancers without pulmonary lesions were included as control subjects. After PET transmission images of the thorax were obtained, approximately 370 MBq of FDG was injected intravenously and imaging was immediately begun. Patients were supine throughout the study. SUVs were determined with images obtained 50-70 min after FDG injection. Regions of interest (ROIs) of 6×6 pixels were positioned over normal lung in anterior, mid, and posterior portions of upper, middle, and lower lung fields. Thus, as many as 18 ROIs were positioned in each patient. The SUVs of the posterior portion were significantly higher than those of the anterior and mid portions in the population of 31 cases (P 18F activity was highest in posterior and lower lung in these patients. The maximum value of mean SUV observed in normal posterior lower lung was 0.804±0.230 (41% greater than the mean SUV in the anterior upper lung), which is in the range of the apparent SUV for a 5-mm lung lesion, with higher SUV, due to recovery coefficient issues. Thus this phenomenon could contribute to occasional false-negative lesions in those areas. Increased blood flow and FDG delivery and also scatter from heart and liver may contribute to the increased lower lung background activity. Regional differences in normal lung FDG uptake are significant and should be considered when interpreting pulmonary PET studies in patients with suspected primary or metastatic lung cancer.

Original languageEnglish (US)
Pages (from-to)517-523
Number of pages7
JournalEuropean Journal Of Nuclear Medicine
Volume23
Issue number5
StatePublished - 1996
Externally publishedYes

Fingerprint

Fluorodeoxyglucose F18
Lung
Lung Neoplasms
Non-Small Cell Lung Carcinoma
Positron-Emission Tomography
Reference Values
Thorax

Keywords

  • 2-[F]fluoro-2-deoxy-D-glucose
  • Lung
  • Positron emission tomography
  • Standardized uptake value

ASJC Scopus subject areas

  • Radiology Nuclear Medicine and imaging

Cite this

Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung. / Miyauchi, Tsutomu; Wahl, Richard L.

In: European Journal Of Nuclear Medicine, Vol. 23, No. 5, 1996, p. 517-523.

Research output: Contribution to journalArticle

Miyauchi, Tsutomu ; Wahl, Richard L. / Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung. In: European Journal Of Nuclear Medicine. 1996 ; Vol. 23, No. 5. pp. 517-523.
@article{937a91a7c0ca4e9fb462729a201f0199,
title = "Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung",
abstract = "2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is a promising imaging procedure for detecting primary and metastatic cancer in the lungs. We have, however, failed to detect some small tumors in the lower lobes of the lungs. This study aimed to determine whether increase 18F background activity in the dependent lower lungs is present, which could make lesion detection more difficult. We measured the standardized uptake values (SUVs) for FDG of normal lung remote from the nodular lesion in 16 patients with newly diagnosed untreated lung lesions stronlgy suspected to represent non-small cell lung cancers. In addition, 15 patients with known or suspected primary breast cancers without pulmonary lesions were included as control subjects. After PET transmission images of the thorax were obtained, approximately 370 MBq of FDG was injected intravenously and imaging was immediately begun. Patients were supine throughout the study. SUVs were determined with images obtained 50-70 min after FDG injection. Regions of interest (ROIs) of 6×6 pixels were positioned over normal lung in anterior, mid, and posterior portions of upper, middle, and lower lung fields. Thus, as many as 18 ROIs were positioned in each patient. The SUVs of the posterior portion were significantly higher than those of the anterior and mid portions in the population of 31 cases (P 18F activity was highest in posterior and lower lung in these patients. The maximum value of mean SUV observed in normal posterior lower lung was 0.804±0.230 (41{\%} greater than the mean SUV in the anterior upper lung), which is in the range of the apparent SUV for a 5-mm lung lesion, with higher SUV, due to recovery coefficient issues. Thus this phenomenon could contribute to occasional false-negative lesions in those areas. Increased blood flow and FDG delivery and also scatter from heart and liver may contribute to the increased lower lung background activity. Regional differences in normal lung FDG uptake are significant and should be considered when interpreting pulmonary PET studies in patients with suspected primary or metastatic lung cancer.",
keywords = "2-[F]fluoro-2-deoxy-D-glucose, Lung, Positron emission tomography, Standardized uptake value",
author = "Tsutomu Miyauchi and Wahl, {Richard L.}",
year = "1996",
language = "English (US)",
volume = "23",
pages = "517--523",
journal = "European Journal of Nuclear Medicine and Molecular Imaging",
issn = "1619-7070",
publisher = "Springer Verlag",
number = "5",

}

TY - JOUR

T1 - Regional 2-[18F]fluoro-2-deoxy-D-glucose uptake varies in normal lung

AU - Miyauchi, Tsutomu

AU - Wahl, Richard L.

PY - 1996

Y1 - 1996

N2 - 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is a promising imaging procedure for detecting primary and metastatic cancer in the lungs. We have, however, failed to detect some small tumors in the lower lobes of the lungs. This study aimed to determine whether increase 18F background activity in the dependent lower lungs is present, which could make lesion detection more difficult. We measured the standardized uptake values (SUVs) for FDG of normal lung remote from the nodular lesion in 16 patients with newly diagnosed untreated lung lesions stronlgy suspected to represent non-small cell lung cancers. In addition, 15 patients with known or suspected primary breast cancers without pulmonary lesions were included as control subjects. After PET transmission images of the thorax were obtained, approximately 370 MBq of FDG was injected intravenously and imaging was immediately begun. Patients were supine throughout the study. SUVs were determined with images obtained 50-70 min after FDG injection. Regions of interest (ROIs) of 6×6 pixels were positioned over normal lung in anterior, mid, and posterior portions of upper, middle, and lower lung fields. Thus, as many as 18 ROIs were positioned in each patient. The SUVs of the posterior portion were significantly higher than those of the anterior and mid portions in the population of 31 cases (P 18F activity was highest in posterior and lower lung in these patients. The maximum value of mean SUV observed in normal posterior lower lung was 0.804±0.230 (41% greater than the mean SUV in the anterior upper lung), which is in the range of the apparent SUV for a 5-mm lung lesion, with higher SUV, due to recovery coefficient issues. Thus this phenomenon could contribute to occasional false-negative lesions in those areas. Increased blood flow and FDG delivery and also scatter from heart and liver may contribute to the increased lower lung background activity. Regional differences in normal lung FDG uptake are significant and should be considered when interpreting pulmonary PET studies in patients with suspected primary or metastatic lung cancer.

AB - 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is a promising imaging procedure for detecting primary and metastatic cancer in the lungs. We have, however, failed to detect some small tumors in the lower lobes of the lungs. This study aimed to determine whether increase 18F background activity in the dependent lower lungs is present, which could make lesion detection more difficult. We measured the standardized uptake values (SUVs) for FDG of normal lung remote from the nodular lesion in 16 patients with newly diagnosed untreated lung lesions stronlgy suspected to represent non-small cell lung cancers. In addition, 15 patients with known or suspected primary breast cancers without pulmonary lesions were included as control subjects. After PET transmission images of the thorax were obtained, approximately 370 MBq of FDG was injected intravenously and imaging was immediately begun. Patients were supine throughout the study. SUVs were determined with images obtained 50-70 min after FDG injection. Regions of interest (ROIs) of 6×6 pixels were positioned over normal lung in anterior, mid, and posterior portions of upper, middle, and lower lung fields. Thus, as many as 18 ROIs were positioned in each patient. The SUVs of the posterior portion were significantly higher than those of the anterior and mid portions in the population of 31 cases (P 18F activity was highest in posterior and lower lung in these patients. The maximum value of mean SUV observed in normal posterior lower lung was 0.804±0.230 (41% greater than the mean SUV in the anterior upper lung), which is in the range of the apparent SUV for a 5-mm lung lesion, with higher SUV, due to recovery coefficient issues. Thus this phenomenon could contribute to occasional false-negative lesions in those areas. Increased blood flow and FDG delivery and also scatter from heart and liver may contribute to the increased lower lung background activity. Regional differences in normal lung FDG uptake are significant and should be considered when interpreting pulmonary PET studies in patients with suspected primary or metastatic lung cancer.

KW - 2-[F]fluoro-2-deoxy-D-glucose

KW - Lung

KW - Positron emission tomography

KW - Standardized uptake value

UR - http://www.scopus.com/inward/record.url?scp=0029664308&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029664308&partnerID=8YFLogxK

M3 - Article

VL - 23

SP - 517

EP - 523

JO - European Journal of Nuclear Medicine and Molecular Imaging

JF - European Journal of Nuclear Medicine and Molecular Imaging

SN - 1619-7070

IS - 5

ER -