Reconstructing Sinus Anatomy from Endoscopic Video – Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment

Xingtong Liu, Maia Stiber, Jindan Huang, Masaru Ishii, Gregory D. Hager, Russell H. Taylor, Mathias Unberath

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Reconstructing accurate 3D surface models of sinus anatomy directly from an endoscopic video is a promising avenue for cross-sectional and longitudinal analysis to better understand the relationship between sinus anatomy and surgical outcomes. We present a patient-specific, learning-based method for 3D reconstruction of sinus surface anatomy directly and only from endoscopic videos. We demonstrate the effectiveness and accuracy of our method on in and ex vivo data where we compare to sparse reconstructions from Structure from Motion, dense reconstruction from COLMAP, and ground truth anatomy from CT. Our textured reconstructions are watertight and enable measurement of clinically relevant parameters in good agreement with CT. The source code is available at https://github.com/lppllppl920/DenseReconstruction-Pytorch.

Original languageEnglish (US)
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
EditorsAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
PublisherSpringer Science and Business Media Deutschland GmbH
Pages3-13
Number of pages11
ISBN (Print)9783030597153
DOIs
StatePublished - 2020
Event23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Peru
Duration: Oct 4 2020Oct 8 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12263 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
CountryPeru
CityLima
Period10/4/2010/8/20

ASJC Scopus subject areas

  • Theoretical Computer Science
  • Computer Science(all)

Fingerprint Dive into the research topics of 'Reconstructing Sinus Anatomy from Endoscopic Video – Towards a Radiation-Free Approach for Quantitative Longitudinal Assessment'. Together they form a unique fingerprint.

Cite this