Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass

Kenneth Brady, Brijen Joshi, Christian Zweifel, Peter Smielewski, Marek Czosnyka, R. Blaine Easley, Charles W. Hogue

Research output: Contribution to journalArticlepeer-review

211 Scopus citations

Abstract

Background and Purpose-: Individualizing mean arterial blood pressure targets to a patient's cerebral blood flow autoregulatory range might prevent brain ischemia for patients undergoing cardiopulmonary bypass (CPB). This study compares the accuracy of real-time cerebral blood flow autoregulation monitoring using near-infrared spectroscopy with that of transcranial Doppler. Methods-: Sixty adult patients undergoing CPB had transcranial Doppler monitoring of middle cerebral artery blood flow velocity and near-infrared spectroscopy monitoring. The mean velocity index (Mx) was calculated as a moving, linear correlation coefficient between slow waves of middle cerebral artery blood flow velocity and mean arterial blood pressure. The cerebral oximetry index was calculated as a similar coefficient between slow waves of cerebral oximetry and mean arterial blood pressure. When cerebral blood flow is autoregulated, Mx and cerebral oximetry index vary around zero. Loss of autoregulation results in progressively more positive Mx and cerebral oximetry index. Results-: Mx and cerebral oximetry index showed significant correlation (r=0.55, P<0.0001) and good agreement (bias, 0.08±0.18, 95% limits of agreement:-0.27 to 0.43) during CPB. Autoregulation was disturbed in this cohort during CPB (average Mx 0.38, 95% CI 0.34 to 0.43). The lower cerebral blood flow autoregulatory threshold (defined as incremental increase in Mx >0.45) during CPB ranged from 45 to 80 mm Hg. Conclusions-: Cerebral blood flow autoregulation can be monitored continuously with near-infrared spectroscopy in adult patients undergoing CPB. Real-time autoregulation monitoring may have a role in preventing injurious hypotension during CPB.

Original languageEnglish (US)
Pages (from-to)1951-1956
Number of pages6
JournalStroke
Volume41
Issue number9
DOIs
StatePublished - Sep 2010

Keywords

  • cardiopulmonary bypass
  • cerebrovascular circulation
  • surgery

ASJC Scopus subject areas

  • Clinical Neurology
  • Cardiology and Cardiovascular Medicine
  • Advanced and Specialized Nursing

Fingerprint

Dive into the research topics of 'Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass'. Together they form a unique fingerprint.

Cite this