Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27(KIP1)

Jason D. Weber, Weimin Hu, Stephen C. Jefcoat, Daniel Max Raben, Joseph J. Baldassare

Research output: Contribution to journalArticle

Abstract

Platelet-derived growth factor (PDGF)-induced Ras activation is required for G1 progression in Chinese hamster embryo fibroblasts (IIC9 cells). Ras stimulates both extracellular signal-related kinase (ERK) activation and RhoA activation in response to PDGF stimulation. Inhibition of either of these Ras-stimulated pathways results in growth arrest. We have shown previously that Ras-stimulated ERK activation is essential for the induction and continued G1 expression of cyclin D1. In this study we examine the role of Ras-induced RhoA activity in G1 progression. Unstimulated IIC9 cells expressed high levels of the G1 cyclin-dependent kinase inhibitor p27(KIP1). Stimulation with PDGF resulted in a dramatic decrease in p27(KIP1) protein expression. This decrease was attributed to increased p27(KIP1) protein degradation. Overexpression of dominant-negative forms of Ras or RhoA completely blocked PDGF-induced p27(KIP1) degradation, but only dominant- negative Ras inhibited cyclin D1 protein expression. C3 transferase also inhibited PDGF-induced p27(KIP1) degradation, thus further implicating RhoA in p27(KIP1) regulation. Overexpression of dominant-negative ERK resulted in inhibition of PDGF-induced cyclin D1 expression but had no effect on PDGF- induced p27(KIP1) degradation. These data suggest that Ras coordinates the independent regulation of cyclin D1 and p27(KIP1) expression by the respective activation of ERK and RhoA and that these pathways converge to determine the activation state of complexes of cyclin D1 and cyclin-dependent kinase in response to mitogen.

Original languageEnglish (US)
Pages (from-to)32966-32971
Number of pages6
JournalJournal of Biological Chemistry
Volume272
Issue number52
DOIs
StatePublished - Dec 26 1997

Fingerprint

Cyclin D1
Platelet-Derived Growth Factor
Phosphotransferases
Chemical activation
Degradation
Cyclin-Dependent Kinase Inhibitor p27
Proteins
Cyclin-Dependent Kinases
Fibroblasts
Transferases
Cricetulus
Mitogens
Proteolysis
Embryonic Structures
Growth

ASJC Scopus subject areas

  • Biochemistry

Cite this

Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27(KIP1). / Weber, Jason D.; Hu, Weimin; Jefcoat, Stephen C.; Raben, Daniel Max; Baldassare, Joseph J.

In: Journal of Biological Chemistry, Vol. 272, No. 52, 26.12.1997, p. 32966-32971.

Research output: Contribution to journalArticle

@article{93abeb5d36f1438ebe9a3ccffd73f9a4,
title = "Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27(KIP1)",
abstract = "Platelet-derived growth factor (PDGF)-induced Ras activation is required for G1 progression in Chinese hamster embryo fibroblasts (IIC9 cells). Ras stimulates both extracellular signal-related kinase (ERK) activation and RhoA activation in response to PDGF stimulation. Inhibition of either of these Ras-stimulated pathways results in growth arrest. We have shown previously that Ras-stimulated ERK activation is essential for the induction and continued G1 expression of cyclin D1. In this study we examine the role of Ras-induced RhoA activity in G1 progression. Unstimulated IIC9 cells expressed high levels of the G1 cyclin-dependent kinase inhibitor p27(KIP1). Stimulation with PDGF resulted in a dramatic decrease in p27(KIP1) protein expression. This decrease was attributed to increased p27(KIP1) protein degradation. Overexpression of dominant-negative forms of Ras or RhoA completely blocked PDGF-induced p27(KIP1) degradation, but only dominant- negative Ras inhibited cyclin D1 protein expression. C3 transferase also inhibited PDGF-induced p27(KIP1) degradation, thus further implicating RhoA in p27(KIP1) regulation. Overexpression of dominant-negative ERK resulted in inhibition of PDGF-induced cyclin D1 expression but had no effect on PDGF- induced p27(KIP1) degradation. These data suggest that Ras coordinates the independent regulation of cyclin D1 and p27(KIP1) expression by the respective activation of ERK and RhoA and that these pathways converge to determine the activation state of complexes of cyclin D1 and cyclin-dependent kinase in response to mitogen.",
author = "Weber, {Jason D.} and Weimin Hu and Jefcoat, {Stephen C.} and Raben, {Daniel Max} and Baldassare, {Joseph J.}",
year = "1997",
month = "12",
day = "26",
doi = "10.1074/jbc.272.52.32966",
language = "English (US)",
volume = "272",
pages = "32966--32971",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "52",

}

TY - JOUR

T1 - Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27(KIP1)

AU - Weber, Jason D.

AU - Hu, Weimin

AU - Jefcoat, Stephen C.

AU - Raben, Daniel Max

AU - Baldassare, Joseph J.

PY - 1997/12/26

Y1 - 1997/12/26

N2 - Platelet-derived growth factor (PDGF)-induced Ras activation is required for G1 progression in Chinese hamster embryo fibroblasts (IIC9 cells). Ras stimulates both extracellular signal-related kinase (ERK) activation and RhoA activation in response to PDGF stimulation. Inhibition of either of these Ras-stimulated pathways results in growth arrest. We have shown previously that Ras-stimulated ERK activation is essential for the induction and continued G1 expression of cyclin D1. In this study we examine the role of Ras-induced RhoA activity in G1 progression. Unstimulated IIC9 cells expressed high levels of the G1 cyclin-dependent kinase inhibitor p27(KIP1). Stimulation with PDGF resulted in a dramatic decrease in p27(KIP1) protein expression. This decrease was attributed to increased p27(KIP1) protein degradation. Overexpression of dominant-negative forms of Ras or RhoA completely blocked PDGF-induced p27(KIP1) degradation, but only dominant- negative Ras inhibited cyclin D1 protein expression. C3 transferase also inhibited PDGF-induced p27(KIP1) degradation, thus further implicating RhoA in p27(KIP1) regulation. Overexpression of dominant-negative ERK resulted in inhibition of PDGF-induced cyclin D1 expression but had no effect on PDGF- induced p27(KIP1) degradation. These data suggest that Ras coordinates the independent regulation of cyclin D1 and p27(KIP1) expression by the respective activation of ERK and RhoA and that these pathways converge to determine the activation state of complexes of cyclin D1 and cyclin-dependent kinase in response to mitogen.

AB - Platelet-derived growth factor (PDGF)-induced Ras activation is required for G1 progression in Chinese hamster embryo fibroblasts (IIC9 cells). Ras stimulates both extracellular signal-related kinase (ERK) activation and RhoA activation in response to PDGF stimulation. Inhibition of either of these Ras-stimulated pathways results in growth arrest. We have shown previously that Ras-stimulated ERK activation is essential for the induction and continued G1 expression of cyclin D1. In this study we examine the role of Ras-induced RhoA activity in G1 progression. Unstimulated IIC9 cells expressed high levels of the G1 cyclin-dependent kinase inhibitor p27(KIP1). Stimulation with PDGF resulted in a dramatic decrease in p27(KIP1) protein expression. This decrease was attributed to increased p27(KIP1) protein degradation. Overexpression of dominant-negative forms of Ras or RhoA completely blocked PDGF-induced p27(KIP1) degradation, but only dominant- negative Ras inhibited cyclin D1 protein expression. C3 transferase also inhibited PDGF-induced p27(KIP1) degradation, thus further implicating RhoA in p27(KIP1) regulation. Overexpression of dominant-negative ERK resulted in inhibition of PDGF-induced cyclin D1 expression but had no effect on PDGF- induced p27(KIP1) degradation. These data suggest that Ras coordinates the independent regulation of cyclin D1 and p27(KIP1) expression by the respective activation of ERK and RhoA and that these pathways converge to determine the activation state of complexes of cyclin D1 and cyclin-dependent kinase in response to mitogen.

UR - http://www.scopus.com/inward/record.url?scp=0031453368&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031453368&partnerID=8YFLogxK

U2 - 10.1074/jbc.272.52.32966

DO - 10.1074/jbc.272.52.32966

M3 - Article

C2 - 9407076

AN - SCOPUS:0031453368

VL - 272

SP - 32966

EP - 32971

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 52

ER -