Rapid synthesis of acetylcholine receptors at neuromuscular junctions

David A. Ramsay, Daniel B. Drachman, Alan Pestronk

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromusular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChR; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChR should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with α-bungarotoxin (α-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-α-BuTx. The results show that new receptors were initially inserted rapidlly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-α-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

Original languageEnglish (US)
Pages (from-to)134-141
Number of pages8
JournalBrain research
Volume462
Issue number1
DOIs
StatePublished - Oct 11 1988

Keywords

  • Acetylcholine receptor
  • Neuromuscular junction
  • Receptor synthesis
  • α-Bungarotoxin

ASJC Scopus subject areas

  • General Neuroscience
  • Molecular Biology
  • Clinical Neurology
  • Developmental Biology

Fingerprint

Dive into the research topics of 'Rapid synthesis of acetylcholine receptors at neuromuscular junctions'. Together they form a unique fingerprint.

Cite this