Ranking genomic features using an information-theoretic measure of epigenetic discordance

Garrett Jenkinson, Jordi Abante, Michael A. Koldobskiy, Andrew P. Feinberg, John Goutsias

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Establishment and maintenance of DNA methylation throughout the genome is an important epigenetic mechanism that regulates gene expression whose disruption has been implicated in human diseases like cancer. It is therefore crucial to know which genes, or other genomic features of interest, exhibit significant discordance in DNA methylation between two phenotypes. We have previously proposed an approach for ranking genes based on methylation discordance within their promoter regions, determined by centering a window of fixed size at their transcription start sites. However, we cannot use this method to identify statistically significant genomic features and handle features of variable length and with missing data. Results: We present a new approach for computing the statistical significance of methylation discordance within genomic features of interest in single and multiple test/reference studies. We base the proposed method on a well-articulated hypothesis testing problem that produces p- and q-values for each genomic feature, which we then use to identify and rank features based on the statistical significance of their epigenetic dysregulation. We employ the information-theoretic concept of mutual information to derive a novel test statistic, which we can evaluate by computing Jensen-Shannon distances between the probability distributions of methylation in a test and a reference sample. We design the proposed methodology to simultaneously handle biological, statistical, and technical variability in the data, as well as variable feature lengths and missing data, thus enabling its wide-spread use on any list of genomic features. This is accomplished by estimating, from reference data, the null distribution of the test statistic as a function of feature length using generalized additive regression models. Differential assessment, using normal/cancer data from healthy fetal tissue and pediatric high-grade glioma patients, illustrates the potential of our approach to greatly facilitate the exploratory phases of clinically and biologically relevant methylation studies. Conclusions: The proposed approach provides the first computational tool for statistically testing and ranking genomic features of interest based on observed DNA methylation discordance in comparative studies that accounts, in a rigorous manner, for biological, statistical, and technical variability in methylation data, as well as for variability in feature length and for missing data.

Original languageEnglish (US)
Article number175
JournalBMC Bioinformatics
Volume20
Issue number1
DOIs
StatePublished - Apr 8 2019

Keywords

  • DNA methylation
  • Gene ranking
  • Genomic feature analysis
  • Information theory
  • Methylation analysis
  • Mutual Information
  • WGBS data analysis

ASJC Scopus subject areas

  • Structural Biology
  • Biochemistry
  • Molecular Biology
  • Computer Science Applications
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Ranking genomic features using an information-theoretic measure of epigenetic discordance'. Together they form a unique fingerprint.

Cite this