Radiation dose reduction in pediatric CT-guided musculoskeletal procedures

Anand S. Patel, Bruno Soares, Jesse Courtier, John D. MacKenzie

Research output: Contribution to journalReview articlepeer-review


Background: Computed-tomography-guided interventions are attractive for tissue sampling of pediatric bone lesions; however, it comes with exposure to ionizing radiation, inherent to CT and magnified by multiple passes during needle localization. Objective: We evaluate a method of CT-guided bone biopsy that minimizes ionizing radiation exposure by lowering CT scanner tube current (mAs) and voltage (kVp) during each localization scan. Materials and methods: We retrospectively reviewed all CT-guided bone biopsies (n = 13) over a 1-year period in 12 children. Three blinded readers identified the needle tip on the reduced-dose CT images (mAs = 50, kVp = 80) during the final localization scan at biopsy and rated the image quality as high, moderate or low. Results: The image quality of the reduced-dose scans during biopsy was rated as either high or moderate, with needle tip visualized in 12 out of 13 biopsies. Twelve of 13 biopsies also returned sufficient sample for a pathological diagnosis. The average savings in exposure using the dose-reduction technique was 87%. Conclusion: Our results suggest that a low mAs and kVp strategy for needle localization during CT-guided bone biopsy yields a large dose reduction and produces acceptable image quality without sacrificing yield for biopsy diagnosis.

Original languageEnglish (US)
Pages (from-to)1303-1308
Number of pages6
JournalPediatric radiology
Issue number10
StatePublished - Oct 2013
Externally publishedYes


  • CT-guided intervention
  • Children
  • Image Gently
  • Musculoskeletal procedure
  • Radiation dose

ASJC Scopus subject areas

  • Pediatrics, Perinatology, and Child Health
  • Radiology Nuclear Medicine and imaging


Dive into the research topics of 'Radiation dose reduction in pediatric CT-guided musculoskeletal procedures'. Together they form a unique fingerprint.

Cite this