Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects

Mohammad Obaidul Hoque, Ozlem Topaloglu, Shahnaz Begum, Rui Henrique, Eli Rosenbaum, Wim Van Criekinge, William H. Westra, David Sidransky

Research output: Contribution to journalArticle

Abstract

Purpose: Aberrant promoter hypermethylation of several known or putative tumor suppressor genes occurs frequently during the pathogenesis of prostate cancers and is a promising marker for cancer detection. We sought to develop a test for prostate cancer based on a quantitative methylation-specific polymerase chain reaction (QMSP) of multiple genes in urine sediment DNA. Patients and Methods: We tested urine sediment DNA for aberrant methylation of nine gene promoters (p16INK4a, p14ARF, MGMT, GSTP1, RARβ2, CDH1 [E-cadherin], TIMP3, Rassf1A, and APC) from 52 patients with prostate cancer and 21 matched primary tumors by quantitative fluorogenic real-time polymerase chain reaction. We also analyzed urine sediments from 91 age-matched individuals without any history of genitourinary malignancy as controls. Results: Promoter hypermethylation of at least one of the genes studied was detected in urine samples from all 52 prostate cancer patients. Urine samples from the 91 controls without evidence of genitourinary cancer revealed no methylation of the p16, ARF, MGMT, and GSTP1 gene promoters, whereas methylation of RARβ2, TIMP3, CDH1, Rassf1A, and APC was detected at low levels. Conclusion: Overall, methylation found in urine samples matched the methylation status in the primary tumor. A combination of only four genes (p16, ARF, MGMT, and GSTP1) would theoretically allow us to detect 87% of prostate cancers with 100% specificity. Our data support further development of the noninvasive QMSP assay in urine DNA for early detection and surveillance of prostate cancer.

Original languageEnglish (US)
Pages (from-to)6569-6575
Number of pages7
JournalJournal of Clinical Oncology
Volume23
Issue number27
DOIs
StatePublished - Sep 20 2005

ASJC Scopus subject areas

  • Oncology
  • Cancer Research

Fingerprint Dive into the research topics of 'Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects'. Together they form a unique fingerprint.

  • Cite this