TY - GEN
T1 - Quantitative accuracy considerations in dynamic state-of-the-art PET imaging (when average counts-per-LOR are (much) less than unity)
AU - Rahmim, Arman
AU - Cheng, Ju Chieh
AU - Blinder, Stefan
AU - Camborde, Marie Laure
AU - Sossi, Vesna
PY - 2005/12/1
Y1 - 2005/12/1
N2 - State-of-the-art high resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. Particularly, we have discussed and addressed the following two considerations in the context of dynamic PET imaging: (i) The typical average numbers of counts-per-LOR are now (much) less than unity.; (ii) The wide range of statistics (due to physical/biological decay of the activity) coupled with the aforementioned low count-rates-per-LOR further challenge the quantitative accuracy of dynamic reconstructions. In this context, we have argued theoretically and demonstrated experimentally, that the sinogram non-negativity constraint (when using the delayed coincidence and/or scatter subtraction techniques) will result in considerable overestimation biases. Two alternate schemes have been considered, and have been shown to remove the aforementioned bias. We have also investigated applicabilities of ordinary and convergent subsetized image reconstruction methods.
AB - State-of-the-art high resolution PET is now more than ever in need of scrutiny into the nature and limitations of the imaging modality itself as well as image reconstruction techniques. Particularly, we have discussed and addressed the following two considerations in the context of dynamic PET imaging: (i) The typical average numbers of counts-per-LOR are now (much) less than unity.; (ii) The wide range of statistics (due to physical/biological decay of the activity) coupled with the aforementioned low count-rates-per-LOR further challenge the quantitative accuracy of dynamic reconstructions. In this context, we have argued theoretically and demonstrated experimentally, that the sinogram non-negativity constraint (when using the delayed coincidence and/or scatter subtraction techniques) will result in considerable overestimation biases. Two alternate schemes have been considered, and have been shown to remove the aforementioned bias. We have also investigated applicabilities of ordinary and convergent subsetized image reconstruction methods.
UR - http://www.scopus.com/inward/record.url?scp=33846576737&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=33846576737&partnerID=8YFLogxK
U2 - 10.1109/NSSMIC.2005.1596783
DO - 10.1109/NSSMIC.2005.1596783
M3 - Conference contribution
AN - SCOPUS:33846576737
SN - 0780392213
SN - 9780780392212
T3 - IEEE Nuclear Science Symposium Conference Record
SP - 2253
EP - 2255
BT - 2005 IEEE Nuclear Science Symposium Conference Record -Nuclear Science Symposium and Medical Imaging Conference
T2 - Nuclear Science Symposium Conference Record, 2005 IEEE
Y2 - 23 October 2005 through 29 October 2005
ER -