Pull-push neuromodulation of cortical plasticity enables rapid bi-directional shifts in ocular dominance

Su Hong, Shiyong Huang, Daniel Severin, Alfredo Kirkwood

Research output: Contribution to journalArticlepeer-review

Abstract

Neuromodulatory systems are essential for remodeling glutamatergic connectivity during experience-dependent cortical plasticity. This permissive/enabling function of neuromodulators has been associated with their capacity to facilitate the induction of Hebbian forms of long-term potentiation (LTP) and depression (LTD) by affecting cellular and network excitability. In vitro studies indicate that neuromodulators also affect the expression of Hebbian plasticity in a pull-push manner: receptors coupled to the G-protein Gs promote the expression of LTP at the expense of LTD, and Gq-coupled receptors promote LTD at the expense of LTP. Here we show that pull-push mechanisms can be recruited in vivo by pairing brief monocular stimulation with pharmacological or chemogenetical activation of Gs-or Gq-coupled receptors to respectively enhance or reduce neuronal responses in primary visual cortex. These changes were stable, inducible in adults after the termination of the critical period for ocular dominance plasticity, and can rescue deficits induced by prolonged monocular deprivation.

Original languageEnglish (US)
Article numbere54455
Pages (from-to)1-20
Number of pages20
JournaleLife
Volume9
DOIs
StatePublished - May 2020

ASJC Scopus subject areas

  • Neuroscience(all)
  • Immunology and Microbiology(all)
  • Biochemistry, Genetics and Molecular Biology(all)

Fingerprint Dive into the research topics of 'Pull-push neuromodulation of cortical plasticity enables rapid bi-directional shifts in ocular dominance'. Together they form a unique fingerprint.

Cite this