PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer

Research output: Contribution to journalArticlepeer-review


Metastatic prostate cancer causes significant morbidity and mortality and there is a critical unmet need for effective treatments. We have developed a theranostic nanoplex platform for combined imaging and therapy of prostate cancer. Our prostate-specific membrane antigen (PSMA) targeted nanoplex is designed to deliver plasmid DNA encoding tumor necrosis factor related apoptosis-inducing ligand (TRAIL), together with bacterial cytosine deaminase (bCD) as a prodrug enzyme. Nanoplex specificity was tested using two variants of human PC3 prostate cancer cells in culture and in tumor xenografts, one with high PSMA expression and the other with negligible expression levels. The expression of EGFP-TRAIL was demonstrated by fluorescence optical imaging and real-time PCR. Noninvasive 19F MR spectroscopy detected the conversion of the nontoxic prodrug 5-fluorocytosine (5-FC) to cytotoxic 5-fluorouracil (5-FU) by bCD. The combination strategy of TRAIL gene and 5-FC/bCD therapy showed significant inhibition of the growth of prostate cancer cells and tumors. These data demonstrate that the PSMA-specific theranostic nanoplex can deliver gene therapy and prodrug enzyme therapy concurrently for precision medicine in metastatic prostate cancer.

Original languageEnglish (US)
Pages (from-to)57-67
Number of pages11
StatePublished - Feb 1 2016


  • Gene therapy
  • PSMA
  • Prodrug enzyme therapy
  • Prostate cancer
  • Theranostic imaging

ASJC Scopus subject areas

  • Bioengineering
  • Ceramics and Composites
  • Biophysics
  • Biomaterials
  • Mechanics of Materials


Dive into the research topics of 'PSMA-specific theranostic nanoplex for combination of TRAIL gene and 5-FC prodrug therapy of prostate cancer'. Together they form a unique fingerprint.

Cite this