Protein inhibitor of mitochondrial ATP synthase: Relationship of inhibitor structure to pH-dependent regulation

Michael S. Lebowitz, Peter L Pedersen

Research output: Contribution to journalArticle

Abstract

In the absence of an electrochemical proton gradient, the F1 moiety of the mitochondrial ATP synthase catalyzes the hydrolysis of ATP. This reaction is inhibited by a natural protein inhibitor, in a process characterized by an increase in ATPase inhibition as pH is decreased from 8.0 to 6.0. In order to gain greater insight into the molecular and chemical events underlying this regulatory process, the relationships among pH, helicity of the inhibitor protein, and its capacity to inhibit F1-ATPase activity were examined. First, peptides corresponding to four regions of the 82-amino-acid inhibitor protein were chemically synthesized and assessed for both retention of secondary structure, and capacity to inhibit F1-ATPase activity. These studies showed that a region of only 24-amino-acid residues, from Phe 22 through Leu 45, accounts for the inhibitory capacity of the inhibitor protein, and that retention of native helical structure in this region is not essential for inhibition. Second, three mutants (33P34, 39P40, and 43P44) of the intact inhibitor protein were prepared in which a proline residue was inserted within the inhibitory region to disrupt native helical structure. The secondary structures and inhibitory capacities of these mutants were analyzed as a function of pH. These studies revealed that, despite the initial loss of helical structure within the inhibitory region due to proline insertion, a further loss of helical structure is required to modulate inhibitory activity. These results suggest that a loss of helical structure outside the inhibitory region correlates with an increase in inhibitory capacity. Finally, two separate mutants (H48A and H55A) were prepared in which a conserved histidine residue in the wild-type inhibitor protein was replaced with an alanine. The secondary structures and inhibitory capacities of these mutants were also investigated as a function of pH. Results indicated that, although histidine residues do not directly affect the inhibitory capacity of the protein, they are important for maintaining the inhibitor protein in an inactive form at high pH. Furthermore, these results show that loss in helical structure, although correlated with an increase in inhibitory capacity, is not essential for this function. These novel experiments are consistent with a model in which the inhibitor protein is envisioned as consisting of two regions, an inhibitory region and a regulatory region. It is suggested that reduction of pH allows for the protonation of a histidine residue blocking the interaction between the two regions, thus activating the inhibitory response. The pH reduction also correlates with a partial unfolding of the protein that may either cause or result from the loss of interaction between the two helices. This unfolding may be necessary for further optimization of inhibitor function.

Original languageEnglish (US)
Pages (from-to)342-354
Number of pages13
JournalArchives of Biochemistry and Biophysics
Volume330
Issue number2
DOIs
StatePublished - Jun 15 1996

Fingerprint

Mitochondrial Proton-Translocating ATPases
Proteins
Histidine
Proton-Translocating ATPases
Proline
Amino Acids
Protein Unfolding
Nucleic Acid Regulatory Sequences
Protonation
Alanine
Adenosine Triphosphatases
Protons
Hydrolysis
Adenosine Triphosphate

Keywords

  • ATP synthase
  • F-ATPase
  • Mitochondria
  • Protein inhibitor

ASJC Scopus subject areas

  • Biochemistry
  • Biophysics
  • Molecular Biology

Cite this

Protein inhibitor of mitochondrial ATP synthase : Relationship of inhibitor structure to pH-dependent regulation. / Lebowitz, Michael S.; Pedersen, Peter L.

In: Archives of Biochemistry and Biophysics, Vol. 330, No. 2, 15.06.1996, p. 342-354.

Research output: Contribution to journalArticle

@article{efdd4b86c8c34ec7a36aa04341b35d95,
title = "Protein inhibitor of mitochondrial ATP synthase: Relationship of inhibitor structure to pH-dependent regulation",
abstract = "In the absence of an electrochemical proton gradient, the F1 moiety of the mitochondrial ATP synthase catalyzes the hydrolysis of ATP. This reaction is inhibited by a natural protein inhibitor, in a process characterized by an increase in ATPase inhibition as pH is decreased from 8.0 to 6.0. In order to gain greater insight into the molecular and chemical events underlying this regulatory process, the relationships among pH, helicity of the inhibitor protein, and its capacity to inhibit F1-ATPase activity were examined. First, peptides corresponding to four regions of the 82-amino-acid inhibitor protein were chemically synthesized and assessed for both retention of secondary structure, and capacity to inhibit F1-ATPase activity. These studies showed that a region of only 24-amino-acid residues, from Phe 22 through Leu 45, accounts for the inhibitory capacity of the inhibitor protein, and that retention of native helical structure in this region is not essential for inhibition. Second, three mutants (33P34, 39P40, and 43P44) of the intact inhibitor protein were prepared in which a proline residue was inserted within the inhibitory region to disrupt native helical structure. The secondary structures and inhibitory capacities of these mutants were analyzed as a function of pH. These studies revealed that, despite the initial loss of helical structure within the inhibitory region due to proline insertion, a further loss of helical structure is required to modulate inhibitory activity. These results suggest that a loss of helical structure outside the inhibitory region correlates with an increase in inhibitory capacity. Finally, two separate mutants (H48A and H55A) were prepared in which a conserved histidine residue in the wild-type inhibitor protein was replaced with an alanine. The secondary structures and inhibitory capacities of these mutants were also investigated as a function of pH. Results indicated that, although histidine residues do not directly affect the inhibitory capacity of the protein, they are important for maintaining the inhibitor protein in an inactive form at high pH. Furthermore, these results show that loss in helical structure, although correlated with an increase in inhibitory capacity, is not essential for this function. These novel experiments are consistent with a model in which the inhibitor protein is envisioned as consisting of two regions, an inhibitory region and a regulatory region. It is suggested that reduction of pH allows for the protonation of a histidine residue blocking the interaction between the two regions, thus activating the inhibitory response. The pH reduction also correlates with a partial unfolding of the protein that may either cause or result from the loss of interaction between the two helices. This unfolding may be necessary for further optimization of inhibitor function.",
keywords = "ATP synthase, F-ATPase, Mitochondria, Protein inhibitor",
author = "Lebowitz, {Michael S.} and Pedersen, {Peter L}",
year = "1996",
month = "6",
day = "15",
doi = "10.1006/abbi.1996.0261",
language = "English (US)",
volume = "330",
pages = "342--354",
journal = "Archives of Biochemistry and Biophysics",
issn = "0003-9861",
publisher = "Academic Press Inc.",
number = "2",

}

TY - JOUR

T1 - Protein inhibitor of mitochondrial ATP synthase

T2 - Relationship of inhibitor structure to pH-dependent regulation

AU - Lebowitz, Michael S.

AU - Pedersen, Peter L

PY - 1996/6/15

Y1 - 1996/6/15

N2 - In the absence of an electrochemical proton gradient, the F1 moiety of the mitochondrial ATP synthase catalyzes the hydrolysis of ATP. This reaction is inhibited by a natural protein inhibitor, in a process characterized by an increase in ATPase inhibition as pH is decreased from 8.0 to 6.0. In order to gain greater insight into the molecular and chemical events underlying this regulatory process, the relationships among pH, helicity of the inhibitor protein, and its capacity to inhibit F1-ATPase activity were examined. First, peptides corresponding to four regions of the 82-amino-acid inhibitor protein were chemically synthesized and assessed for both retention of secondary structure, and capacity to inhibit F1-ATPase activity. These studies showed that a region of only 24-amino-acid residues, from Phe 22 through Leu 45, accounts for the inhibitory capacity of the inhibitor protein, and that retention of native helical structure in this region is not essential for inhibition. Second, three mutants (33P34, 39P40, and 43P44) of the intact inhibitor protein were prepared in which a proline residue was inserted within the inhibitory region to disrupt native helical structure. The secondary structures and inhibitory capacities of these mutants were analyzed as a function of pH. These studies revealed that, despite the initial loss of helical structure within the inhibitory region due to proline insertion, a further loss of helical structure is required to modulate inhibitory activity. These results suggest that a loss of helical structure outside the inhibitory region correlates with an increase in inhibitory capacity. Finally, two separate mutants (H48A and H55A) were prepared in which a conserved histidine residue in the wild-type inhibitor protein was replaced with an alanine. The secondary structures and inhibitory capacities of these mutants were also investigated as a function of pH. Results indicated that, although histidine residues do not directly affect the inhibitory capacity of the protein, they are important for maintaining the inhibitor protein in an inactive form at high pH. Furthermore, these results show that loss in helical structure, although correlated with an increase in inhibitory capacity, is not essential for this function. These novel experiments are consistent with a model in which the inhibitor protein is envisioned as consisting of two regions, an inhibitory region and a regulatory region. It is suggested that reduction of pH allows for the protonation of a histidine residue blocking the interaction between the two regions, thus activating the inhibitory response. The pH reduction also correlates with a partial unfolding of the protein that may either cause or result from the loss of interaction between the two helices. This unfolding may be necessary for further optimization of inhibitor function.

AB - In the absence of an electrochemical proton gradient, the F1 moiety of the mitochondrial ATP synthase catalyzes the hydrolysis of ATP. This reaction is inhibited by a natural protein inhibitor, in a process characterized by an increase in ATPase inhibition as pH is decreased from 8.0 to 6.0. In order to gain greater insight into the molecular and chemical events underlying this regulatory process, the relationships among pH, helicity of the inhibitor protein, and its capacity to inhibit F1-ATPase activity were examined. First, peptides corresponding to four regions of the 82-amino-acid inhibitor protein were chemically synthesized and assessed for both retention of secondary structure, and capacity to inhibit F1-ATPase activity. These studies showed that a region of only 24-amino-acid residues, from Phe 22 through Leu 45, accounts for the inhibitory capacity of the inhibitor protein, and that retention of native helical structure in this region is not essential for inhibition. Second, three mutants (33P34, 39P40, and 43P44) of the intact inhibitor protein were prepared in which a proline residue was inserted within the inhibitory region to disrupt native helical structure. The secondary structures and inhibitory capacities of these mutants were analyzed as a function of pH. These studies revealed that, despite the initial loss of helical structure within the inhibitory region due to proline insertion, a further loss of helical structure is required to modulate inhibitory activity. These results suggest that a loss of helical structure outside the inhibitory region correlates with an increase in inhibitory capacity. Finally, two separate mutants (H48A and H55A) were prepared in which a conserved histidine residue in the wild-type inhibitor protein was replaced with an alanine. The secondary structures and inhibitory capacities of these mutants were also investigated as a function of pH. Results indicated that, although histidine residues do not directly affect the inhibitory capacity of the protein, they are important for maintaining the inhibitor protein in an inactive form at high pH. Furthermore, these results show that loss in helical structure, although correlated with an increase in inhibitory capacity, is not essential for this function. These novel experiments are consistent with a model in which the inhibitor protein is envisioned as consisting of two regions, an inhibitory region and a regulatory region. It is suggested that reduction of pH allows for the protonation of a histidine residue blocking the interaction between the two regions, thus activating the inhibitory response. The pH reduction also correlates with a partial unfolding of the protein that may either cause or result from the loss of interaction between the two helices. This unfolding may be necessary for further optimization of inhibitor function.

KW - ATP synthase

KW - F-ATPase

KW - Mitochondria

KW - Protein inhibitor

UR - http://www.scopus.com/inward/record.url?scp=0029894465&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0029894465&partnerID=8YFLogxK

U2 - 10.1006/abbi.1996.0261

DO - 10.1006/abbi.1996.0261

M3 - Article

C2 - 8660664

AN - SCOPUS:0029894465

VL - 330

SP - 342

EP - 354

JO - Archives of Biochemistry and Biophysics

JF - Archives of Biochemistry and Biophysics

SN - 0003-9861

IS - 2

ER -