Propensity score models in observational comparative effectiveness studies: Cornerstone of design or statistical afterthought?

John W. Robinson

Research output: Contribution to journalArticle

Abstract

Propensity score models are increasingly used in observational comparative effectiveness studies to reduce confounding by covariates that are associated with both a study outcome and treatment choice. Any such potentially confounding covariate will bias estimation of the effect of treatment on the outcome, unless the distribution of that covariate is well-balanced between treatment and control groups. Constructing a subsample of treated and control subjects who are matched on estimated propensity scores is a means of achieving such balance for covariates that are included in the propensity score model. If, during study design, investigators assemble a comprehensive inventory of known and suspected potentially confounding covariates, examination of how well this inventory is covered by the chosen dataset yields an assessment of the extent of bias reduction that is possible by matching on estimated propensity scores. These considerations are explored by examining the designs of three recently published comparative effectiveness studies.

Original languageEnglish (US)
Pages (from-to)129-135
Number of pages7
JournalJournal of Comparative Effectiveness Research
Volume1
Issue number2
DOIs
StatePublished - Mar 2012
Externally publishedYes

Keywords

  • comparative effectiveness research
  • confounding
  • observational study
  • propensity score
  • selection bias

ASJC Scopus subject areas

  • Health Policy

Fingerprint Dive into the research topics of 'Propensity score models in observational comparative effectiveness studies: Cornerstone of design or statistical afterthought?'. Together they form a unique fingerprint.

  • Cite this